Heterogeneity in the distribution of 159 drug-response related SNPs in world populations and their genetic relatedness

Autoři: Tamim Ahsan aff001;  Nusrat Jahan Urmi aff002;  Abu Ashfaqur Sajib aff003
Působiště autorů: Department of Genetic Engineering & Biotechnology, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh aff001;  Department of Medicine, BIRDEM General Hospital, Dhaka, Bangladesh aff002;  Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0228000


Interethnic variability in drug response arises from genetic differences associated with drug metabolism, action and transport. These genetic variations can affect drug efficacy as well as cause adverse drug reactions (ADRs). We retrieved drug-response related single nucleotide polymorphism (SNP) associated data from databases and analyzed to elucidate population specific distribution of 159 drug-response related SNPs in twenty six populations belonging to five super-populations (African, Admixed Americans, East Asian, European and South Asian). Significant interpopulation differences exist in the minor (variant) allele frequencies (MAFs), linkage disequilibrium (LD) and haplotype distributions among these populations. 65 of the drug-response related alleles, which are considered as minor (variant) in global population, are present as the major alleles (frequency ≥0.5) in at least one or more populations. Populations that belong to the same super-population have similar distribution pattern for majority of the variant alleles. These drug response related variant allele frequencies and their pairwise LD measure (r2) can clearly distinguish the populations in a way that correspond to the known evolutionary history of human and current geographic distributions, while D' cannot. The data presented here may aid in identifying drugs that are more appropriate and/or require pharmacogenetic testing in these populations. Our findings emphasize on the importance of distinct, ethnicity-specific clinical guidelines, especially for the African populations, to avoid ADRs and ensure effective drug treatment.

Klíčová slova:

African American people – African people – Alleles – Europe – Haplotypes – Hemorrhage – Neoplasms – Population genetics


1. Brown AM, Renaud Y, Ross C, Hansen M, Mongrain I, Valois D, et al. Development of a broad-based ADME panel for use in pharmacogenomic studies. Pharmacogenomics. 2014;15(9):1185–95. doi: 10.2217/pgs.14.81 25141894

2. Grossman I. ADME pharmacogenetics: current practices and future outlook. Expert Opin Drug Metab Toxicol. 2009;5(5):449–62. doi: 10.1517/17425250902902322 19416082

3. Mukerjee G, Huston A, Kabakchiev B, Piquette-Miller M, van Schaik R, Dorfman R. User considerations in assessing pharmacogenomic tests and their clinical support tools. NPJ Genom Med. 2018;3(26).

4. Impicciatore P, Choonara I, Clarkson A, Provasi D, Pandolfini C, Bonati M. Incidence of adverse drug reactions in paediatric in/out-patients: a systematic review and meta-analysis of prospective studies. Br J Clin Pharmacol. 2001;52(1):77–83. doi: 10.1046/j.0306-5251.2001.01407.x 11453893

5. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998;279(15):1200–5. doi: 10.1001/jama.279.15.1200 9555760

6. Mouton JP, Mehta U, Parrish AG, Wilson DP, Stewart A, Njuguna CW, et al. Mortality from adverse drug reactions in adult medical inpatients at four hospitals in South Africa: a cross-sectional survey. Br J Clin Pharmacol. 2015;80(4):818–26. doi: 10.1111/bcp.12567 25475751

7. Sanghera DK, Bejar C, Sapkota B, Wander GS, Ralhan S. Frequencies of poor metabolizer alleles of 12 pharmacogenomic actionable genes in Punjabi Sikhs of Indian Origin. Sci Rep. 2018;8(1):15742. doi: 10.1038/s41598-018-33981-z 30356105

8. Bachtiar M, Lee CGL. Genetics of population differences in drug response. Curr Genet Med Rep. 2013;1(3):162–70.

9. Goulding R, Dawes D, Price M, Wilkie S, Dawes M. Genotype-guided drug prescribing: a systematic review and meta-analysis of randomized control trials. Br J Clin Pharmacol. 2015;80(4):868–77. doi: 10.1111/bcp.12475 25060532

10. Nebert D, Menon A. Pharmacogenomics, ethnicity, and susceptibility genes. Pharmacogenomics J. 2001;1(1):19–22. doi: 10.1038/sj.tpj.6500002 11913722

11. Suarez-Kurtz G, Parra EJ. Population Diversity in Pharmacogenetics: A Latin American Perspective. Adv Pharmacol. 2018;83:133–54. doi: 10.1016/bs.apha.2018.02.001 29801573

12. Ortega VE, Meyers DA. Pharmacogenetics: implications of race and ethnicity on defining genetic profiles for personalized medicine. J Allergy Clin Immunol. 2014;133(1):16–26. doi: 10.1016/j.jaci.2013.10.040 24369795

13. Claudio-Campos K, Duconge J, Cadilla CL, Ruaño G. Pharmacogenetics of drug-metabolizing enzymes in US Hispanics. Drug Metab Pers Ther. 2015;30(2):87–105. doi: 10.1515/dmdi-2014-0023 25431893

14. McGraw J, Waller D. Cytochrome P450 variations in different ethnic populations. Expert Opin Drug Metab Toxicol. 2012;8:371–82. doi: 10.1517/17425255.2012.657626 22288606

15. Srivastava MR, Chandra A. STATINS-do we know them or are we Alice in wonderland? Endocrinol Metab Int J. 2017;5(3):241–3.

16. Rahal AJ, ElMallah AI, Poushuju RJ, Itani R. Do statins really cause diabetes? A meta-analysis of major randomized controlled clinical trials. Saudi Med J. 2016;37:1051–60. doi: 10.15537/smj.2016.10.16078 27652354

17. Sattar NA, Ginsberg H, Ray K, Chapman MJ, Arca M, Averna M, et al. The use of statins in people at risk of developing diabetes mellitus: evidence and guidance for clinical practice. Atheroscler Suppl. 2014;15(1):1–15. doi: 10.1016/j.atherosclerosissup.2014.04.001 24840509

18. Lee E, Ryan S, Birmingham B, Zalikowski J, March R, Ambrose H, et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian subjects residing in the same environment. Clin Pharmacol Ther. 2005;78(4):330–41. doi: 10.1016/j.clpt.2005.06.013 16198652

19. Dou Y, Peng P, Cai C, Ye A, Kong L, Zhang R. HLA-B*58:01 and rs9263726 have a linkage, but not absolute linkage disequilibrium in Han Chinese population. Drug Metab Pharmacokinet. 2018;33(5):228–31. doi: 10.1016/j.dmpk.2018.08.001 30193812

20. Maekawa K, Nishikawa J, Kaniwa N, Sugiyama E, Koizumi T, Kurose K, et al. Development of a rapid and inexpensive assay for detecting a surrogate genetic polymorphism of HLA-B*58:01: a partially predictive but useful biomarker for allopurinol-related Stevens-Johnson syndrome/toxic epidermal necrolysis in Japanese. Drug Metab Pharmacokinet. 2012;27(4):447–50. doi: 10.2133/dmpk.dmpk-11-nt-120 22277675

21. Hariprakash JM, Vellarikkal SK, Keechilat P, Verma A, Jayarajan R, Dixit V, et al. Pharmacogenetic landscape of DPYD variants in south Asian populations by integration of genome-scale data. Pharmacogenomics. 2018;19(3):227–41. doi: 10.2217/pgs-2017-0101 29239269

22. Alhusain L, Hafez AM. Nonparametric approaches for population structure analysis. Human genomics. 2018;12(1):25. doi: 10.1186/s40246-018-0156-4 29743099

23. Paschou P, Ziv E, Burchard EG, Choudhry S, Rodriguez-Cintron W, Mahoney MW, et al. PCA-correlated SNPs for structure identification in worldwide human populations. PLoS genetics. 2007;3(9):1672–86. doi: 10.1371/journal.pgen.0030160 17892327

24. Taranto F, D’Agostino N, Greco B, Cardi T, Tripodi P. Genome-wide SNP discovery and population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing. BMC Genomics. 2016;17:943. doi: 10.1186/s12864-016-3297-7 27871227

25. Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8(11):e1002967. doi: 10.1371/journal.pgen.1002967 23166502

26. Qin P, Zhou Y, Lou H, Lu D, Yang X, Wang Y, et al. Quantitating and dating recent gene flow between European and East Asian populations. Sci Rep. 2015;5:9500. doi: 10.1038/srep09500 25833680

27. Chakraborty R. Gene admixture in human populations: models and predictions. Yearbook of physical anthopology 1986;29:1–43.

28. Excoffier L, Smouse PE. Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimon. Genetics. 1994;136:343–59 8138170

29. Meisner J, Albrechtsen A. Inferring population structure and admixture proportions in low-depth NGS data. Genetics. 2018;10(2):719–31.

30. Ardlie KG, Kruglyak L, Seielstad M. Patterns of linkage disequilibrium in the human genome. Nat Rev Genet. 2002;3(4):299–309. doi: 10.1038/nrg777 11967554

31. Campbell MC, Tishkoff SA. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Annu Rev Genomics Hum Genet. 2008;9:403–33. doi: 10.1146/annurev.genom.9.081307.164258 18593304

32. Kim IW, Kim KI, Chang HJ, Yeon B, Bang SJ, Park T, et al. Ethnic variability in the allelic distribution of pharmacogenes between Korean and other populations. Pharmacogenetics and genomics. 2012;22(12):829–36. doi: 10.1097/FPC.0b013e328358dd70 22955668

33. Mahasirimongkol S, Chantratita W, Promso S, Pasomsab E, Jinawath N, Jongjaroenprasert W, et al. Similarity of the allele frequency and linkage disequilibrium pattern of single nucleotide polymorphisms in drug-related gene loci between Thai and northern East Asian populations: Implications for tagging SNP selection in Thais. J Hum Genet. 2006;51(10):896–904. doi: 10.1007/s10038-006-0041-1 16957813

34. Marigorta UM, Navarro A. High trans-ethnic replicability of GWAS results implies common causal variants. PLoS Genet. 2013;9(6):e1003566. doi: 10.1371/journal.pgen.1003566 23785302

35. Mueller JC, Lõhmussaar E, Mägi R, Remm M, Bettecken T, Lichtner P, et al. Linkage disequilibrium patterns and tagSNP transferability among European populations. Am J Hum Genet. 2005;76(3):387–98. doi: 10.1086/427925 15637659

36. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM, et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. 2014;42(Database issue):D980–5. doi: 10.1093/nar/gkt1113 24234437

37. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther. 2012;92(4):414–7. doi: 10.1038/clpt.2012.96 22992668

38. Machiela MJ, Chanock SJ. LDlink: A web-based application for exploring population-specific haplotype structure and linking correlated alleles of possible functional variants. Bioinformatics. 2015;31:3555–7. doi: 10.1093/bioinformatics/btv402 26139635

39. 1000 Genomes Project Consortium, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526(7571):68–74. doi: 10.1038/nature15393 26432245

40. Xia J, Psychogios N, Young N, Wishart DS. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37(Web Server issue):W652–60. doi: 10.1093/nar/gkp356 19429898

41. Ahsan T, Sajib AA. Drug-response related genetic architecture of Bangladeshi population. Meta Gene. 2019;21:100585.

42. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered. 1998;89(3):238–47. doi: 10.1093/jhered/89.3.238 9656466

43. He P, Lei X, Yuan D, Z Z, Huang S. Accumulation of minor alleles and risk prediction in schizophrenia. Scientific Reports. 2017;7:11661. doi: 10.1038/s41598-017-12104-0 28916820

44. Szpiech ZA, Rosenberg NA. On the size distribution of private microsatellite alleles. Theor Popul Biol. 2011;80(2):100–13. doi: 10.1016/j.tpb.2011.03.006 21514313

45. Evans DM, Cardon LR. A comparison of linkage disequilibrium patterns and estimated population recombination rates across multiple populations. Am J Hum Genet. 2005;76(4):681–7. doi: 10.1086/429274 15719321

46. Rahman MS, Ahsan T, Hossain MR, Ahmed T, Sajib AA. Molecular mechanism of Metformin Associated Lactic Acidosis (MALA)- an in silico exploration. Current Pharmacogenomics and Personalized Medicine. 2018;16(3):199–209.

47. Etter JF, Stapleton JA. Nicotine replacement therapy for long-term smoking cessation: a meta-analysis. Tob Control. 2006;15(4):280–5. doi: 10.1136/tc.2005.015487 16885576

48. Cepeda-Benito A, Reynoso JT, Erath S. Meta-analysis of the efficacy of nicotine replacement therapy for smoking cessation: differences between men and women. J Consult Clin Psychol. 2004;72(4):712–22. doi: 10.1037/0022-006X.72.4.712 15301656

49. Asamoah FA, Yarney J, Awasthi S, Vanderpuye V, Venkat PS, Fink AK, et al. Contemporary radiation treatment of prostate cancer in Africa: a Ghanaian experience. J Glob Oncol. 2018;4:1–13.

50. Adeloye D, David RA, Aderemi AV, Iseolorunkanmi A, Oyedokun A, Iweala EE, et al. An estimate of the incidence of prostate cancer in Africa: a systematic review and meta-analysis. PloS one. 2016;11(4):e0153496. doi: 10.1371/journal.pone.0153496 27073921

51. Odedina FT, Akinremi TO, Chinegwundoh F, Roberts R, Yu D, Reams RR, et al. Prostate cancer disparities in Black men of African descent: a comparative literature review of prostate cancer burden among Black men in the United States, Caribbean, United Kingdom, and West Africa. Infect Agent Cancer. 2009;4(Suppl I):S2.

52. Hayes VM, Bornman MSR. Prostate cancer in Southern Africa: does Africa hold untapped potential to add value to the current understanding of a common disease? J Glob Oncol. 2018;4:1–7.

53. Zagars GK, Pollack A, Pettaway CA. Prostate cancer in African-American men: outcome following radiation therapy with or without adjuvant androgen ablation. Int J Radiat Oncol Biol Phys. 1998;42(3):517–23. doi: 10.1016/s0360-3016(98)00260-0 9806509

54. Spratt DE, Dess RT, Hartman HE, Mahal BA, Jackson WC, Soni PD, et al. Androgen receptor activity and radiotherapeutic sensitivity in African-American men with prostate cancer: a large scale gene expression analysis and meta-analysis of RTOG trials. International Journal of Radiation Oncology 2018;102(3):S3.

55. Shenoy D, Packianathan S, Chen AM, Vijayakumar S. Do African-American men need separate prostate cancer screening guidelines? BMC Urol. 2016;16:19. doi: 10.1186/s12894-016-0137-7 27165293

56. Sticchi L, Di Biagio A, Rappazzo E, Setti M, De Rosa G, De Hoffer L, et al. Rs12979860 and rs8099917 single nucleotide polymorphisms of interleukin-28B gene: simultaneous genotyping in caucasian patients infected with hepatitis C virus. J Prev Med Hyg. 2013;54(2):83–6. 24396987

57. Fischer J, Böhm S, Scholz M, Müller T, Witt H, George J, et al. Combined effects of different interleukin-28B gene variants on the outcome of dual combination therapy in chronic hepatitis C virus type 1 infection. Hepatology. 2012;55(6):1700–10. doi: 10.1002/hep.25582 22234924

58. Wu HF, Hristeva N, Chang J, Liang X, Li R, Frassetto L, et al. Rosuvastatin pharmacokinetics in Asian and white subjects wild type for both OATP1B1 and BCRP under control and inhibited conditions. J Pharm Sci. 2017;106(9):2751–7. doi: 10.1016/j.xphs.2017.03.027 28385543

59. Lam MP, Cheung BM. The pharmacogenetics of the response to warfarin in Chinese. Br J Clin Pharmacol. 2012;73(3):340–7. doi: 10.1111/j.1365-2125.2011.04097.x 22023024

60. Ross KA, Bigham AW, Edwards M, Gozdzik A, Suarez-Kurtz G, Parra EJ. Worldwide allele frequency distribution of four polymorphisms associated with warfarin dose requirements. J Hum Genet. 2010;55(9):582–9. doi: 10.1038/jhg.2010.73 20555338

61. Patillon B, Luisi P, Blanché H, Patin E, Cann HM, Génin E, et al. Positive selection in the chromosome 16 VKORC1 genomic region has contributed to the variability of anticoagulant response in humans. PloS one. 2012;7(12):e53049. doi: 10.1371/journal.pone.0053049 23285254

62. Williams DR, Gonza´lez HM, Neighbors H, Nesse R, Abelson JM, Sweetman J, et al. Prevalence and distribution of major depressive disorder in African Americans, Caribbean Blacks, and Non-Hispanic Whites. Arch Gen Psychiatry. 2007;2007(64):305–15.

63. Kawaguchi DM, Glatt SJ. GRIK4 polymorphism and its association with antidepressant response in depressed patients: a meta-analysis. Pharmacogenomics. 2014;15(11):1451–9. doi: 10.2217/pgs.14.96 25303296

64. Aka I, Bernal CJ, Carroll R, Maxwell-Horn A, Oshikoya KA, Van Driest SL. Clinical Pharmacogenetics of Cytochrome P450-Associated Drugs in Children. J Pers Med. 2017;7(4):pii: E14. doi: 10.3390/jpm7040014 29099060

65. Ingelman-Sundberg M. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci. 2004;25:193–200. doi: 10.1016/j.tips.2004.02.007 15063083

66. Ampadu HH, Hoekman J, de Bruin ML, Pal SN, Olsson S, Sartori D, et al. Adverse Drug Reaction Reporting in Africa and a Comparison of Individual Case Safety Report Characteristics Between Africa and the Rest of the World: Analyses of Spontaneous Reports in VigiBase®. Drug Saf. 2016;39(4):335–45. doi: 10.1007/s40264-015-0387-4 26754924

67. Oetting WS, Schladt DP, Guan W, Miller MB, Remmel RP, Dorr C, et al. Genomewide association study of tacrolimus concentrations in African American kidney transplant recipients identifies multiple CYP3A5 alleles. Am J Transplant. 2016;16(2):574–82. doi: 10.1111/ajt.13495 26485092

68. Sanghavi K, Brundage RC, Miller MB, Schladt DP, Israni AK, Guan W, et al. Genotype-guided tacrolimus dosing in African-American kidney transplant recipients. Pharmacogenomics J. 2017;17(1):61–8. doi: 10.1038/tpj.2015.87 26667830

69. Anderson KO, Green CR, Payne R. Racial and ethnic disparities in pain: causes and consequences of unequal care. The Journal of Pain. 2009;10(12):1187–204. doi: 10.1016/j.jpain.2009.10.002 19944378

70. Wang D, Poi MJ, Sun X, Gaedigk A, Leeder JS, Sadee W. Common CYP2D6 polymorphisms affecting alternative splicing and transcription: long-range haplotypes with two regulatory variants modulate CYP2D6 activity. Hum Mol Genet. 2014;23(1):268–78. doi: 10.1093/hmg/ddt417 23985325

71. Ray B, Ozcagli E, Sadee W, Wang D. CYP2D6 haplotypes with enhancer single-nucleotide polymorphism rs5758550 and rs16947 (*2 allele): implications for CYP2D6 genotyping panels. Pharmacogenetics and genomics. 2019;29(2):39–47. doi: 10.1097/FPC.0000000000000363 30520769

72. Kirchheiner J, Schmidt H, Tzvetkov M, Keulen JT, Lötsch J, Roots I, et al. Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J. 2007;7(4):257–65. doi: 10.1038/sj.tpj.6500406 16819548

73. Gammal RS, Crews KR, Haidar CE, Hoffman JM, Baker DK, Barker PJ, et al. Pharmacogenetics for safe codeine use in sickle cell disease. Pediatrics. 2016;138(1):e20153479. doi: 10.1542/peds.2015-3479 27335380

74. Grosse SD, Odame I, Atrash HK, Amendah DD, Piel FB, Williams TN. Sickle cell disease in Africa: a neglected cause of early childhood mortality. Am J Prev Med. 2011;41(6 Suppl 4):S398–405.

75. Solovieff N, Hartley SW, Baldwin CT, Klings ES, Gladwin MT, Taylor JG 6th, et al. Ancestry of African Americans with sickle cell disease. Blood Cells Mol Dis. 2011;47(1):41–5. doi: 10.1016/j.bcmd.2011.04.002 21546286

76. Rajman I, Knapp L, Morgan T, Masimirembwa C. African Genetic Diversity: Implications for Cytochrome P450-mediated Drug Metabolism and Drug Development. EBioMedicine. 2017;17:67–74. doi: 10.1016/j.ebiom.2017.02.017 28237373

77. Teo YY, Ong RT, Sim X, Tai ES, Chia KS. Identifying candidate causal variants via trans-population fine-mapping. Genet Epidemiol. 2010;34(7):653–64. doi: 10.1002/gepi.20522 20839287

78. González-Neira A, Calafell F, Navarro A, Lao O, Cann H, Comas D, et al. Geographic stratification of linkage disequilibrium: a worldwide population study in a region of chromosome 22. Human genomics. 2004;1(6):399–409. doi: 10.1186/1479-7364-1-6-399 15606995

79. Teo YY, Fry AE, Bhattacharya K, Small KS, Kwiatkowski DP, Clark TG. Genome-wide comparisons of variation in linkage disequilibrium. Genome research. 2009;19(10):1849–60. doi: 10.1101/gr.092189.109 19541915

80. Vernot B, Stergachis AB, Maurano MT, Vierstra J, Neph S, Thurman RE, et al. Personal and population genomics of human regulatory variation. Genome Res 2012;22(9):1689–97. doi: 10.1101/gr.134890.111 22955981

81. Campbell MC, Hirbo JB, Townsend JP, Tishkoff SA. The peopling of the African continent and the diaspora into the new world. Curr Opin Genet Dev. 2014;29:120–32. doi: 10.1016/j.gde.2014.09.003 25461616

82. Hellwege JN, Keaton JM, Giri A, Gao X, Edwards DRV, Edwards TL. Population Stratification in Genetic Association Studies. Current protocols in human genetics. 2017;95:1.22.1–1..3.

83. Lambert CA, Tishkoff SA. Genetic structure in African populations: implications for human demographic history. Cold Spring Harb Symp Quant Biol. 2009;74:395–402. doi: 10.1101/sqb.2009.74.053 20453204

84. Fan S, Kelly DE, Beltrame MH, Hansen MEB, Mallick S, Ranciaro A, et al. African evolutionary history inferred from whole genome sequence data of 44 indigenous African populations. Genome Biol. 2019;20(1):82. doi: 10.1186/s13059-019-1679-2 31023338

85. Katoh T, Mano S, Ikuta T, Munkhbat B, Tounai K, Ando H, et al. Genetic isolates in East Asia: a study of linkage disequilibrium in the X chromosome. Am J Hum Genet. 2002;71(2):395–400. doi: 10.1086/341608 12082643

86. Antunez-de-Mayolo G, Antunez-de-Mayolo A, Antunez-de-Mayolo P, Papiha SS, Hammer M, Yunis JJ, et al. Phylogenetics of worldwide human populations as determined by polymorphic Alu insertions. Electrophoresis. 2002;23(19):3346–56. doi: 10.1002/1522-2683(200210)23:19<3346::AID-ELPS3346>3.0.CO;2-J 12373762

87. Duncan G, Thomas E, Gallo JC, Baird LS, Garrison J, Herrera RJ. Human phylogenetic relationships according to the D1S80 locus. Genetica. 1996;98(3):277–87. doi: 10.1007/bf00057592 9204551

88. Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S, et al. Worldwide human relationships inferred from genome-wide patterns of variation. Science. 2008;319(5866):1100–4. doi: 10.1126/science.1153717 18292342

89. Visscher H, Ross CJ, Dubé MP, Brown AM, Phillips MS, Carleton BC, et al. Application of principal component analysis to pharmacogenomic studies in Canada. Pharmacogenomics J. 2009;9(6):362–72. doi: 10.1038/tpj.2009.36 19652663

90. Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, et al. The genetic structure and history of Africans and African Americans. Science. 2009;324(5930):1035–44. doi: 10.1126/science.1172257 19407144

91. Norris ET, Wang L, Conley AB, Rishishwar L, Mariño-Ramírez L, Valderrama-Aguirre A, et al. Genetic ancestry, admixture and health determinants in Latin America. BMC Genomics. 2018;19(Suppl 8):861. doi: 10.1186/s12864-018-5195-7 30537949

92. Rotimi CN, Bentley AR, Doumatey AP, Chen G, Shriner D, Adeyemo A. The genomic landscape of African populations in health and disease. Hum Mol Genet. 2017;26(R2):R225–R36. doi: 10.1093/hmg/ddx253 28977439

93. Wall JD, Yang MA, Jay F, Kim SK, Durand EY, Stevison LS, et al. Higher levels of neanderthal ancestry in East Asians than in Europeans. Genetics. 2013;194(1):199–209. doi: 10.1534/genetics.112.148213 23410836

94. Kim BY, Lohmueller KE. Selection and reduced population size cannot explain higher amounts of Neandertal ancestry in East Asian than in European human populations. American journal of human genetics. 2015;96(3):454–61. doi: 10.1016/j.ajhg.2014.12.029 25683122

95. Villanea FA, Schraiber JG. Multiple episodes of interbreeding between Neanderthal and modern humans. Nature ecology & evolution. 2019;3(1):39–44.

96. Browning SR, Browning BL, Zhou Y, Tucci S, Akey JM. Analysis of human sequence data reveals two pulses of Archaic Denisovan admixture. Cell. 2018;173(1):53–61.e9. doi: 10.1016/j.cell.2018.02.031 29551270

97. Laval G, Patin E, Barreiro LB, Quintana-Murci L. Formulating a historical and demographic model of recent human evolution based on resequencing data from noncoding regions. PloS one. 2010;5(4):e10284. doi: 10.1371/journal.pone.0010284 20421973

98. Xu S. Human population admixture in Asia. Genomics Inform. 2012;10(3):133–44. doi: 10.5808/GI.2012.10.3.133 23166524

99. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. American journal of human genetics. 2017;101(1):5–22. doi: 10.1016/j.ajhg.2017.06.005 28686856

100. VanLiere JM, Rosenberg NA. Mathematical properties of the r2 measure of linkage disequilibrium. Theor Popul Biol. 2008;74(1):130–7. doi: 10.1016/j.tpb.2008.05.006 18572214

101. Shifman S, Kuypers J, Kokoris M, Yakir B, Darvasi A. Linkage disequilibrium patterns of the human genome across populations. Hum Mol Genet. 2003;12(7):771–6. doi: 10.1093/hmg/ddg088 12651872

102. Pittman AM, Myers AJ, Abou-Sleiman P, Fung HC, Kaleem M, Marlowe L, et al. Linkage disequilibrium fine mapping and haplotype association analysis of the tau gene in progressive supranuclear palsy and corticobasal degeneration. J Med Genet. 2005;42:837–46. doi: 10.1136/jmg.2005.031377 15792962

103. Wray NR. Allele frequencies and the r2 measure of linkage disequilibrium impact on design and interpretation of association studies. Twin Research and Human Genetics. 2005;8(2):87–94. doi: 10.1375/1832427053738827 15901470

104. Rotimi CN, Tekola-Ayele F, Baker JL, Shriner D. The African diaspora: history, adaptation and health. Curr Opin Genet Dev. 2016;41:77–84. doi: 10.1016/j.gde.2016.08.005 27644073

105. Montinaro F, Busby GB, Pascali VL, Myers S, Hellenthal G, Capelli C. Unravelling the hidden ancestry of American admixed populations. Nat Commun. 2015;6:6596. doi: 10.1038/ncomms7596 25803618

106. Ruiz-Linares A, Adhikari K, Acuña-Alonzo V, Quinto-Sanchez M, Jaramillo C, Arias W, et al. Admixture in Latin America: geographic structure, phenotypic diversity and self-perception of ancestry based on 7,342 individuals. PLoS Genet. 2014;10(9):e1004572. doi: 10.1371/journal.pgen.1004572 25254375

107. Homburger JR, Moreno-Estrada A, Gignoux CR, Nelson D, Sanchez E, Ortiz-Tello P, et al. Genomic insights into the ancestry and demographic history of South America. PLoS Genet. 2015;11(12):e1005602. doi: 10.1371/journal.pgen.1005602 26636962

108. Salzano FM, Sans M. Interethnic admixture and the evolution of Latin American populations. Genet Mol Biol. 2014;37(1 Suppl):151–70. doi: 10.1590/s1415-47572014000200003 24764751

109. Hofer T, Ray N, Wegmann D, Excoffier L. Large allele frequency differences between human continental groups are more likely to have occurred by drift during range expansions than by selection. Ann Hum Genet. 2009;73(1):95–108. doi: 10.1111/j.1469-1809.2008.00489.x 19040659

110. Li J, Zhang L, Zhou H, Stoneking M, Tang K. Global patterns of genetic diversity and signals of natural selection for human ADME genes. Hum Mol Genet. 2011;20(3):528–40. doi: 10.1093/hmg/ddq498 21081654

111. Mustafina OE, Tuktarova IA, Karimov DD, Somova Rs, Nasibullin TR. CYP2D6, CYP3A5, and CYP3A4 gene polymorphism in Russian, Tatar, and Bashkir populations. Genetika. 2015;51(1):109–19. 25857198

112. Khan A, Tian L, Zhang C, Yuan K, Xu S. Genetic diversity and natural selection footprints of the glycine amidinotransferase gene in various human populations. Scientific Reports. 2016;6:18755. doi: 10.1038/srep18755 26729229

113. Reich D, Thangaraj K, Patterson N, Price AL, Singh L. Reconstructing Indian population history. Nature. 2009;461(7263):489–94. doi: 10.1038/nature08365 19779445

114. Manoharan I, Wieseler S, Layer PG, Lockridge O, Boopathy R. Naturally occurring mutation Leu307Pro of human butyrylcholinesterase in the Vysya community of India. Pharmacogenetics and genomics. 2006;16(7):461–8. doi: 10.1097/01.fpc.0000197464.37211.77 16788378

115. David SM, Venkatesan SK, Boopathy R. An Indian butyrylcholinesterase variant L307P is not structurally stable: a molecular dynamics simulation study. Chem Biol Interact. 2013;203(1):30–5. doi: 10.1016/j.cbi.2012.10.010 23123771

116. Çokuğraş AN. Butyrylcholinesterase: structure and physiological importance. Turk J Biochem. 2003;28(2):54–61.

117. Zencirci B. Pseudocholinesterase enzyme deficiency: a case series and review of the literature. Cases J. 2009;2:9148. doi: 10.1186/1757-1626-2-9148 20062665

118. Nagar SD, Moreno AM, Norris ET, Rishishwar L, Conley AB, O'Neal KL, et al. Population pharmacogenomics for precision public health in Colombia. Front Genet. 2019;10:241. doi: 10.3389/fgene.2019.00241 30967898

119. Thummel KE, Lin YS. Sources of interindividual variability. Methods Mol Biol. 2014;1113:363–415. doi: 10.1007/978-1-62703-758-7_17 24523121

120. Ivanov M, Kacevska M, Ingelman-Sundberg M. Epigenomics and interindividual differences in drug response. Clin Pharmacol Ther. 2012;92(6):727–36. doi: 10.1038/clpt.2012.152 23093317

121. Glasspool RM, Teodoridis JM, Brown R. Epigenetics as a mechanism driving polygenic clinical drug resistance. Br J Cancer. 2006;94(8):1087–92. doi: 10.1038/sj.bjc.6603024 16495912

122. Losi L, Fonda S, Saponaro S, Chelbi ST, Lancellotti C, Gozzi G, et al. Distinct DNA methylation profiles in ovarian tumors: opportunities for novel biomarkers. Int J Mol Sci. 2018;19(6):pii: E1559. doi: 10.3390/ijms19061559 29882921

123. Bahar MA, Setiawan D, Hak E, Wilffert B. Pharmacogenetics of drug-drug interaction and drug-drug-gene interaction: a systematic review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics. 2017;18(7):701–39. doi: 10.2217/pgs-2017-0194 28480783

124. Knisely MR, Carpenter JS, Draucker CB, Skaar T, Broome ME, Holmes AM, et al. CYP2D6 drug-gene and drug-drug-gene interactions among patients prescribed pharmacogenetically actionable opioids. Appl Nurs Res. 2017;38:107–10. doi: 10.1016/j.apnr.2017.10.001 29241501

125. Gross T, Daniel J. Overview of pharmacogenomic testing in clinical practice. Ment Health Clin. 2018;8(5):235–41. doi: 10.9740/mhc.2018.09.235 30206507

126. Moaddeb J, Haga SB. Pharmacogenetic testing: Current Evidence of Clinical Utility. Ther Adv Drug Saf. 2013;4(4):155–69. doi: 10.1177/2042098613485595 24020014

127. Lee YF, Kwok RCC, Wong ICK, Lui VWY. The Pharmacogenomic Era in Asia: Potential Roles and Challenges for Asian Pharmacists J Pharmacogenomics Pharmacoproteomics. 2017;8(1):1000164.

128. Yang Y, Peter I, Scott SA. Pharmacogenetics in Jewish populations. Drug Metabol Drug Interact. 2014;29(4):221–33. doi: 10.1515/dmdi-2013-0069 24867283

Článek vyšel v časopise


2020 Číslo 1