Liganded T3 receptor β2 inhibits the positive feedback autoregulation of the gene for GATA2, a transcription factor critical for thyrotropin production

Autoři: Naoko Hirahara aff001;  Hiroko Misawa Nakamura aff002;  Shigekazu Sasaki aff002;  Akio Matsushita aff002;  Kenji Ohba aff003;  Go Kuroda aff002;  Yuki Sakai aff002;  Shinsuke Shinkai aff002;  Hiroshi Haeno aff004;  Takuhiro Nishio aff005;  Shuichi Yoshida aff005;  Yutaka Oki aff006;  Takafumi Suda aff002
Působiště autorů: Division of Endocrinology and Metabolism, Department of Internal medicine, Japanese Red Cross Shizuoka Hospital, Shizuoka, Shizuoka, Japan aff001;  Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan aff002;  Medical Education Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan aff003;  Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo Kashiwa, Kashiwa, Chiba, Japan aff004;  Department of Integrated Human Sciences, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan aff005;  Department of Family and Community Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan aff006
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227646


The serum concentration of thyrotropin (thyroid stimulating hormone, TSH) is drastically reduced by small increase in the levels of thyroid hormones (T3 and its prohormone, T4); however, the mechanism underlying this relationship is unknown. TSH consists of the chorionic gonadotropin α (CGA) and the β chain (TSHβ). The expression of both peptides is induced by the transcription factor GATA2, a determinant of the thyrotroph and gonadotroph differentiation in the pituitary. We previously reported that the liganded T3 receptor (TR) inhibits transactivation activity of GATA2 via a tethering mechanism and proposed that this mechanism, but not binding of TR with a negative T3-responsive element, is the basis for the T3-dependent inhibition of the TSHβ and CGA genes. Multiple GATA-responsive elements (GATA-REs) also exist within the GATA2 gene itself and mediate the positive feedback autoregulation of this gene. To elucidate the effect of T3 on this non-linear regulation, we fused the GATA-REs at -3.9 kb or +9.5 kb of the GATA2 gene with the chloramphenicol acetyltransferase reporter gene harbored in its 1S-promoter. These constructs were co-transfected with the expression plasmids for GATA2 and the pituitary specific TR, TRβ2, into kidney-derived CV1 cells. We found that liganded TRβ2 represses the GATA2-induced transactivation of these reporter genes. Multi-dimensional input function theory revealed that liganded TRβ2 functions as a classical transcriptional repressor. Then, we investigated the effect of T3 on the endogenous expression of GATA2 protein and mRNA in the gonadotroph-derived LβT2 cells. In this cell line, T3 reduced GATA2 protein independently of the ubiquitin proteasome system. GATA2 mRNA was drastically suppressed by T3, the concentration of which corresponds to moderate hypothyroidism and euthyroidism. These results suggest that liganded TRβ2 inhibits the positive feedback autoregulation of the GATA2 gene; moreover this mechanism plays an important role in the potent reduction of TSH production by T3.

Klíčová slova:

DNA transcription – Gene expression – Gene regulation – Messenger RNA – Pituitary gland – Plasmid construction – Thyroid-stimulating hormone – Transcription factors


1. Cohen RN, Wondisford FE. Chemistry and Biosynthesis of Thyrotropin. Werner and Ingbar's The Thyroid. 2012;Tenth Edition:pp149-61.

2. Rizzoti K. Genetic regulation of murine pituitary development. J Mol Endocrinol. 2015;54(2):R55–73. Epub 2015/01/15. doi: 10.1530/JME-14-0237 25587054

3. Dasen JS, O'Connell SM, Flynn SE, Treier M, Gleiberman AS, Szeto DP, et al. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell. 1999;97(5):587–98. doi: 10.1016/s0092-8674(00)80770-9 10367888

4. Gordon DF, Lewis SR, Haugen BR, James RA, McDermott MT, Wood WM, et al. Pit-1 and GATA-2 interact and functionally cooperate to activate the thyrotropin beta-subunit promoter. The Journal of biological chemistry. 1997;272(39):24339–47. doi: 10.1074/jbc.272.39.24339 9305891

5. Kashiwabara Y, Sasaki S, Matsushita A, Nagayama K, Ohba K, Iwaki H, et al. Functions of PIT1 in GATA2-dependent transactivation of the thyrotropin beta promoter. J Mol Endocrinol. 2009;42(3):225–37. doi: 10.1677/JME-08-0099 19103719

6. Spinner MA, Sanchez LA, Hsu AP, Shaw PA, Zerbe CS, Calvo KR, et al. GATA2 deficiency: a protean disorder of hematopoiesis, lymphatics, and immunity. Blood. 2014;123(6):809–21. doi: 10.1182/blood-2013-07-515528 24227816

7. Donadieu J, Lamant M, Fieschi C, de Fontbrune FS, Caye A, Ouachee M, et al. Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients. Haematologica. 2018;103(8):1278–87. doi: 10.3324/haematol.2017.181909 29724903

8. Ohba K, Sasaki S, Matsushita A, Iwaki H, Matsunaga H, Suzuki S, et al. GATA2 mediates thyrotropin-releasing hormone-induced transcriptional activation of the thyrotropin beta gene. PloS one. 2011;6(4):e18667. doi: 10.1371/journal.pone.0018667 21533184

9. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocrine reviews. 2010;31(2):139–70. doi: 10.1210/er.2009-0007 20051527

10. Jensen FC, Girardi AJ, Gilden RV, Koprowski H. Infection of Human and Simian Tissue Cultures with Rous Sarcoma Virus. Proceedings of the National Academy of Sciences of the United States of America. 1964;52:53–9. doi: 10.1073/pnas.52.1.53 14192657

11. Umesono K, Evans RM. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell. 1989;57(7):1139–46. doi: 10.1016/0092-8674(89)90051-2 2500251

12. Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991;65(7):1255–66. doi: 10.1016/0092-8674(91)90020-y 1648450

13. Sasaki S, Matsushita A, Kuroda G, Nakamura HM, Oki Y, Suda T. The Mechanism of Negative Transcriptional Regulation by Thyroid Hormone: Lessons From the Thyrotropin beta Subunit Gene. Vitam Horm. 2018;106:97–127. doi: 10.1016/bs.vh.2017.06.006 29407449

14. Shupnik MA, Ridgway EC, Chin WW. Molecular biology of thyrotropin. Endocrine reviews. 1989;10(4):459–75. doi: 10.1210/edrv-10-4-459 2693083

15. Abel ED, Boers ME, Pazos-Moura C, Moura E, Kaulbach H, Zakaria M, et al. Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. The Journal of clinical investigation. 1999;104(3):291–300. doi: 10.1172/JCI6397 10430610

16. Wondisford FE, Farr EA, Radovick S, Steinfelder HJ, Moates JM, McClaskey JH, et al. Thyroid hormone inhibition of human thyrotropin beta-subunit gene expression is mediated by a cis-acting element located in the first exon. The Journal of biological chemistry. 1989;264(25):14601–4. 2768233

17. Nakano K, Matsushita A, Sasaki S, Misawa H, Nishiyama K, Kashiwabara Y, et al. Thyroid-hormone-dependent negative regulation of thyrotropin beta gene by thyroid hormone receptors: study with a new experimental system using CV1 cells. Biochem J. 2004;378(Pt 2):549–57. doi: 10.1042/BJ20031592 14611644

18. Matsushita A, Sasaki S, Kashiwabara Y, Nagayama K, Ohba K, Iwaki H, et al. Essential role of GATA2 in the negative regulation of thyrotropin beta gene by thyroid hormone and its receptors. Molecular endocrinology (Baltimore, Md). 2007;21(4):865–84.

19. Petta I, Dejager L, Ballegeer M, Lievens S, Tavernier J, De Bosscher K, et al. The Interactome of the Glucocorticoid Receptor and Its Influence on the Actions of Glucocorticoids in Combatting Inflammatory and Infectious Diseases. Microbiology and molecular biology reviews: MMBR. 2016;80(2):495–522. doi: 10.1128/MMBR.00064-15 27169854

20. Reichlin S, Utiger RD. Regulation of the pituitary-thyroid axis in man: relationship of TSH concentration to concentration of free and total thyroxine in plasma. The Journal of clinical endocrinology and metabolism. 1967;27(2):251–5. doi: 10.1210/jcem-27-2-251 4163614

21. Wehmann RE, Nisula BC. Radioimmunoassay of human thyrotropin: analytical and clinical developments. Critical reviews in clinical laboratory sciences. 1984;20(3):243–83. doi: 10.3109/10408368409165776 6373146

22. Spencer CA, LoPresti JS, Patel A, Guttler RB, Eigen A, Shen D, et al. Applications of a new chemiluminometric thyrotropin assay to subnormal measurement. The Journal of clinical endocrinology and metabolism. 1990;70(2):453–60. doi: 10.1210/jcem-70-2-453 2105333

23. Hoermann R, Eckl W, Hoermann C, Larisch R. Complex relationship between free thyroxine and TSH in the regulation of thyroid function. European journal of endocrinology. 2010;162(6):1123–9. doi: 10.1530/EJE-10-0106 20299491

24. Hadlow NC, Rothacker KM, Wardrop R, Brown SJ, Lim EM, Walsh JP. The relationship between TSH and free T(4) in a large population is complex and nonlinear and differs by age and sex. The Journal of clinical endocrinology and metabolism. 2013;98(7):2936–43. doi: 10.1210/jc.2012-4223 23671314

25. Larsen PR, Davies TF, Schlumberger MJ, Hay ID. Thyroid Physiology and Diagnostic Evaluation of Patients with Thyroid Disorders. Williams Textbook of Endocrinology. 2015;Thirteenth Edition:pp334–68.

26. Leow MK, Goede SL. The homeostatic set point of the hypothalamus-pituitary-thyroid axis—maximum curvature theory for personalized euthyroid targets. Theor Biol Med Model. 2014;11:35. doi: 10.1186/1742-4682-11-35 25102854

27. Hoermann R, Midgley JEM, Larisch R, Dietrich JWC. Advances in applied homeostatic modelling of the relationship between thyrotropin and free thyroxine. PloS one. 2017;12(11):e0187232. doi: 10.1371/journal.pone.0187232 29155897

28. Dietrich JW, Midgley JEM, Hoermann R. Editorial: "Homeostasis and Allostasis of Thyroid Function". Front Endocrinol (Lausanne). 2018;9:287.

29. Medici M, Visser WE, Visser TJ, Peeters RP. Genetic determination of the hypothalamic-pituitary-thyroid axis: where do we stand? Endocrine reviews. 2015;36(2):214–44. doi: 10.1210/er.2014-1081 25751422

30. Laverriere JN, L'Hote D, Tabouy L, Schang AL, Querat B, Cohen-Tannoudji J. Epigenetic regulation of alternative promoters and enhancers in progenitor, immature, and mature gonadotrope cell lines. Molecular and cellular endocrinology. 2016;434:250–65. doi: 10.1016/j.mce.2016.07.010 27402603

31. Bai H, Sakurai T, Godkin JD, Imakawa K. Expression and potential role of GATA factors in trophoblast development. J Reprod Dev. 2013;59(1):1–6. doi: 10.1262/jrd.2012-100 23428586

32. Home P, Kumar RP, Ganguly A, Saha B, Milano-Foster J, Bhattacharya B, et al. Genetic redundancy of GATA factors in the extraembryonic trophoblast lineage ensures the progression of preimplantation and postimplantation mammalian development. Development (Cambridge, England). 2017;144(5):876–88.

33. Paul S, Home P, Bhattacharya B, Ray S. GATA factors: Master regulators of gene expression in trophoblast progenitors. Placenta. 2017;60 Suppl 1:S61–s6.

34. Steger DJ, Hecht JH, Mellon PL. GATA-binding proteins regulate the human gonadotropin alpha-subunit gene in the placenta and pituitary gland. Molecular and cellular biology. 1994;14(8):5592–602. doi: 10.1128/mcb.14.8.5592 7518566

35. Jorgensen JS, Quirk CC, Nilson JH. Multiple and overlapping combinatorial codes orchestrate hormonal responsiveness and dictate cell-specific expression of the genes encoding luteinizing hormone. Endocrine reviews. 2004;25(4):521–42. doi: 10.1210/er.2003-0029 15294880

36. Ray S, Dutta D, Rumi MA, Kent LN, Soares MJ, Paul S. Context-dependent function of regulatory elements and a switch in chromatin occupancy between GATA3 and GATA2 regulate Gata2 transcription during trophoblast differentiation. The Journal of biological chemistry. 2009;284(8):4978–88. doi: 10.1074/jbc.M807329200 19106099

37. Kobayashi-Osaki M, Ohneda O, Suzuki N, Minegishi N, Yokomizo T, Takahashi S, et al. GATA motifs regulate early hematopoietic lineage-specific expression of the Gata2 gene. Molecular and cellular biology. 2005;25(16):7005–20. doi: 10.1128/MCB.25.16.7005-7020.2005 16055713

38. Grass JA, Jing H, Kim SI, Martowicz ML, Pal S, Blobel GA, et al. Distinct functions of dispersed GATA factor complexes at an endogenous gene locus. Molecular and cellular biology. 2006;26(19):7056–67. doi: 10.1128/MCB.01033-06 16980610

39. Bresnick EH, Katsumura KR, Lee HY, Johnson KD, Perkins AS. Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies. Nucleic Acids Res. 2012;40(13):5819–31. doi: 10.1093/nar/gks281 22492510

40. Minegishi N, Ohta J, Suwabe N, Nakauchi H, Ishihara H, Hayashi N, et al. Alternative promoters regulate transcription of the mouse GATA-2 gene. The Journal of biological chemistry. 1998;273(6):3625–34. doi: 10.1074/jbc.273.6.3625 9452491

41. Minegishi N, Ohta J, Yamagiwa H, Suzuki N, Kawauchi S, Zhou Y, et al. The mouse GATA-2 gene is expressed in the para-aortic splanchnopleura and aorta-gonads and mesonephros region. Blood. 1999;93(12):4196–207. 10361117

42. Grass JA, Boyer ME, Pal S, Wu J, Weiss MJ, Bresnick EH. GATA-1-dependent transcriptional repression of GATA-2 via disruption of positive autoregulation and domain-wide chromatin remodeling. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(15):8811–6. doi: 10.1073/pnas.1432147100 12857954

43. Turgeon JL, Kimura Y, Waring DW, Mellon PL. Steroid and pulsatile gonadotropin-releasing hormone (GnRH) regulation of luteinizing hormone and GnRH receptor in a novel gonadotrope cell line. Molecular endocrinology (Baltimore, Md). 1996;10(4):439–50.

44. Lo A, Zheng W, Gong Y, Crochet JR, Halvorson LM. GATA transcription factors regulate LHbeta gene expression. J Mol Endocrinol. 2011;47(1):45–58. doi: 10.1530/JME-10-0137 21571865

45. Johnson KD, Hsu AP, Ryu MJ, Wang J, Gao X, Boyer ME, et al. Cis-element mutated in GATA2-dependent immunodeficiency governs hematopoiesis and vascular integrity. The Journal of clinical investigation. 2012;122(10):3692–704. doi: 10.1172/JCI61623 22996659

46. Misawa H, Sasaki S, Matsushita A, Ohba K, Iwaki H, Matsunaga H, et al. Liganded thyroid hormone receptor inhibits phorbol 12-O-tetradecanoate-13-acetate-induced enhancer activity via firefly luciferase cDNA. PloS one. 2012;7(1):e28916. doi: 10.1371/journal.pone.0028916 22253701

47. Matsunaga H, Sasaki S, Suzuki S, Matsushita A, Nakamura H, Nakamura HM, et al. Essential Role of GATA2 in the Negative Regulation of Type 2 Deiodinase Gene by Liganded Thyroid Hormone Receptor beta2 in Thyrotroph. PloS one. 2015;10(11):e0142400. doi: 10.1371/journal.pone.0142400 26571013

48. Yusta B, Alarid ET, Gordon DF, Ridgway EC, Mellon PL. The thyrotropin beta-subunit gene is repressed by thyroid hormone in a novel thyrotrope cell line, mouse T alphaT1 cells. Endocrinology. 1998;139(11):4476–82. doi: 10.1210/endo.139.11.6283 9794455

49. Alon U. Multi-Dimensional Input-Functions. An Introduction to Systems Biology: Design Principles of Biological Circuits. 2006;Tenth Edition:pp253–5.

50. Iwaki H, Sasaki S, Matsushita A, Ohba K, Matsunaga H, Misawa H, et al. Essential role of TEA domain transcription factors in the negative regulation of the MYH 7 gene by thyroid hormone and its receptors. PloS one. 2014;9(4):e88610. doi: 10.1371/journal.pone.0088610 24781449

51. Wozniak RJ, Boyer ME, Grass JA, Lee Y, Bresnick EH. Context-dependent GATA factor function: combinatorial requirements for transcriptional control in hematopoietic and endothelial cells. The Journal of biological chemistry. 2007;282(19):14665–74. doi: 10.1074/jbc.M700792200 17347142

52. Kohler PO, Bridson WE. Isolation of hormone-producing clonal lines of human choriocarcinoma. The Journal of clinical endocrinology and metabolism. 1971;32(5):683–7. doi: 10.1210/jcem-32-5-683 5103722

53. Fowkes RC, King P, Burrin JM. Regulation of human glycoprotein hormone alpha-subunit gene transcription in LbetaT2 gonadotropes by protein kinase C and extracellular signal-regulated kinase 1/2. Biology of reproduction. 2002;67(3):725–34. doi: 10.1095/biolreprod67.3.725 12193378

54. Minami T, Abid MR, Zhang J, King G, Kodama T, Aird WC. Thrombin stimulation of vascular adhesion molecule-1 in endothelial cells is mediated by protein kinase C (PKC)-delta-NF-kappa B and PKC-zeta-GATA signaling pathways. The Journal of biological chemistry. 2003;278(9):6976–84. doi: 10.1074/jbc.M208974200 12493764

55. Minegishi N, Suzuki N, Kawatani Y, Shimizu R, Yamamoto M. Rapid turnover of GATA-2 via ubiquitin-proteasome protein degradation pathway. Genes Cells. 2005;10(7):693–704. doi: 10.1111/j.1365-2443.2005.00864.x 15966900

56. Nakajima T, Kitagawa K, Ohhata T, Sakai S, Uchida C, Shibata K, et al. Regulation of GATA-binding protein 2 levels via ubiquitin-dependent degradation by Fbw7: involvement of cyclin B-cyclin-dependent kinase 1-mediated phosphorylation of THR176 in GATA-binding protein 2. The Journal of biological chemistry. 2015;290(16):10368–81. doi: 10.1074/jbc.M114.613018 25670854

57. Ashizawa K, Cheng SY. Regulation of thyroid hormone receptor-mediated transcription by a cytosol protein. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(19):9277–81. doi: 10.1073/pnas.89.19.9277 1409635

58. Costa-e-Sousa RH, Astapova I, Ye F, Wondisford FE, Hollenberg AN. The thyroid axis is regulated by NCoR1 via its actions in the pituitary. Endocrinology. 2012;153(10):5049–57. doi: 10.1210/en.2012-1504 22878400

59. Gergics P, Christian HC, Choo MS, Ajmal A, Camper SA. Gene Expression in Mouse Thyrotrope Adenoma: Transcription Elongation Factor Stimulates Proliferation. Endocrinology. 2016;157(9):3631–46. doi: 10.1210/en.2016-1183 27580811

60. Charles MA, Saunders TL, Wood WM, Owens K, Parlow AF, Camper SA, et al. Pituitary-specific Gata2 knockout: effects on gonadotrope and thyrotrope function. Molecular endocrinology (Baltimore, Md). 2006;20(6):1366–77.

61. Katsumura KR, Bresnick EH. The GATA factor revolution in hematology. Blood. 2017;129(15):2092–102. Epub 2017/02/10. doi: 10.1182/blood-2016-09-687871 28179282

62. Ranganath S, Murphy KM. Structure and specificity of GATA proteins in Th2 development. Molecular and cellular biology. 2001;21(8):2716–25. doi: 10.1128/MCB.21.8.2716-2725.2001 11283251

63. Nakata Y, Brignier AC, Jin S, Shen Y, Rudnick SI, Sugita M, et al. c-Myb, Menin, GATA-3, and MLL form a dynamic transcription complex that plays a pivotal role in human T helper type 2 cell development. Blood. 2010;116(8):1280–90. doi: 10.1182/blood-2009-05-223255 20484083

64. Forrest D, Hanebuth E, Smeyne RJ, Everds N, Stewart CL, Wehner JM, et al. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue-specific modulation of receptor function. Embo j. 1996;15(12):3006–15. 8670802

65. Weiss RE, Forrest D, Pohlenz J, Cua K, Curran T, Refetoff S. Thyrotropin regulation by thyroid hormone in thyroid hormone receptor beta-deficient mice. Endocrinology. 1997;138(9):3624–9. doi: 10.1210/endo.138.9.5412 9275045

66. Gothe S, Wang Z, Ng L, Kindblom JM, Barros AC, Ohlsson C, et al. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary-thyroid axis, growth, and bone maturation. Genes & development. 1999;13(10):1329–41.

67. Christoffolete MA, Ribeiro R, Singru P, Fekete C, da Silva WS, Gordon DF, et al. Atypical expression of type 2 iodothyronine deiodinase in thyrotrophs explains the thyroxine-mediated pituitary thyrotropin feedback mechanism. Endocrinology. 2006;147(4):1735–43. doi: 10.1210/en.2005-1300 16396983

68. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocrine reviews. 2002;23(1):38–89. doi: 10.1210/edrv.23.1.0455 11844744

69. Gereben B, Zeold A, Dentice M, Salvatore D, Bianco AC. Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cellular and molecular life sciences: CMLS. 2008;65(4):570–90. doi: 10.1007/s00018-007-7396-0 17989921

70. Sugrue ML, Vella KR, Morales C, Lopez ME, Hollenberg AN. The thyrotropin-releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo. Endocrinology. 2010;151(2):793–801. doi: 10.1210/en.2009-0976 20032051

71. Fekete C, Lechan RM. Central regulation of hypothalamic-pituitary-thyroid axis under physiological and pathophysiological conditions. Endocrine reviews. 2014;35(2):159–94. doi: 10.1210/er.2013-1087 24423980

72. Nolan LA, Thomas CK, Levy A. Permissive effects of thyroid hormones on rat anterior pituitary mitotic activity. The Journal of endocrinology. 2004;180(1):35–43. doi: 10.1677/joe.0.1800035 14709142

73. Michaud JL, Rosenquist T, May NR, Fan CM. Development of neuroendocrine lineages requires the bHLH-PAS transcription factor SIM1. Genes & development. 1998;12(20):3264–75.

74. Liu C, Goshu E, Wells A, Fan CM. Identification of the downstream targets of SIM1 and ARNT2, a pair of transcription factors essential for neuroendocrine cell differentiation. The Journal of biological chemistry. 2003;278(45):44857–67. doi: 10.1074/jbc.M304489200 12947113

75. Perello M, Friedman T, Paez-Espinosa V, Shen X, Stuart RC, Nillni EA. Thyroid hormones selectively regulate the posttranslational processing of prothyrotropin-releasing hormone in the paraventricular nucleus of the hypothalamus. Endocrinology. 2006;147(6):2705–16. doi: 10.1210/en.2005-1609 16497799

76. Lean AD, Ferland L, Drouin J, Kelly PA, Labrie F. Modulation of pituitary thyrotropin releasing hormone receptor levels by estrogens and thyroid hormones. Endocrinology. 1977;100(6):1496–504. doi: 10.1210/endo-100-6-1496 192537

77. Schomburg L, Bauer K. Thyroid hormones rapidly and stringently regulate the messenger RNA levels of the thyrotropin-releasing hormone (TRH) receptor and the TRH-degrading ectoenzyme. Endocrinology. 1995;136(8):3480–5. doi: 10.1210/endo.136.8.7628384 7628384

78. Krane IM, Spindel ER, Chin WW. Thyroid hormone decreases the stability and the poly(A) tract length of rat thyrotropin beta-subunit messenger RNA. Molecular endocrinology (Baltimore, Md). 1991;5(4):469–75.

79. Sanchez-Pacheco A, Palomino T, Aranda A. Negative regulation of expression of the pituitary-specific transcription factor GHF-1/Pit-1 by thyroid hormones through interference with promoter enhancer elements. Molecular and cellular biology. 1995;15(11):6322–30. doi: 10.1128/mcb.15.11.6322 7565785

80. Wood WM, Sarapura VD, Dowding JM, Woodmansee WW, Haakinson DJ, Gordon DF, et al. Early gene expression changes preceding thyroid hormone-induced involution of a thyrotrope tumor. Endocrinology. 2002;143(2):347–59. doi: 10.1210/endo.143.2.8636 11796486

81. Furumoto H, Ying H, Chandramouli GV, Zhao L, Walker RL, Meltzer PS, et al. An unliganded thyroid hormone beta receptor activates the cyclin D1/cyclin-dependent kinase/retinoblastoma/E2F pathway and induces pituitary tumorigenesis. Molecular and cellular biology. 2005;25(1):124–35. doi: 10.1128/MCB.25.1.124-135.2005 15601836

82. De Sousa SM, Earls P, McCormack AI. Pituitary hyperplasia: case series and literature review of an under-recognised and heterogeneous condition. Endocrinology, diabetes & metabolism case reports. 2015;2015:150017.

83. Ingley E, Chappell D, Poon SY, Sarna MK, Beaumont JG, Williams JH, et al. Thyroid hormone receptor-interacting protein 1 modulates cytokine and nuclear hormone signaling in erythroid cells. The Journal of biological chemistry. 2001;276(46):43428–34. doi: 10.1074/jbc.M106645200 11544260

84. Park S, Han CR, Park JW, Zhao L, Zhu X, Willingham M, et al. Defective erythropoiesis caused by mutations of the thyroid hormone receptor alpha gene. PLoS genetics. 2017;13(9):e1006991. doi: 10.1371/journal.pgen.1006991 28910278

85. van Mullem AA, Visser TJ, Peeters RP. Clinical Consequences of Mutations in Thyroid Hormone Receptor-alpha1. European thyroid journal. 2014;3(1):17–24. doi: 10.1159/000360637 24847461

86. Kilby MD, Barber K, Hobbs E, Franklyn JA. Thyroid hormone action in the placenta. Placenta. 2005;26(2–3):105–13. doi: 10.1016/j.placenta.2004.08.004 15708111

87. Negro R, Schwartz A, Gismondi R, Tinelli A, Mangieri T, Stagnaro-Green A. Universal screening versus case finding for detection and treatment of thyroid hormonal dysfunction during pregnancy. The Journal of clinical endocrinology and metabolism. 2010;95(4):1699–707. doi: 10.1210/jc.2009-2009 20130074

88. De Groot L, Abalovich M, Alexander EK, Amino N, Barbour L, Cobin RH, et al. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. The Journal of clinical endocrinology and metabolism. 2012;97(8):2543–65. doi: 10.1210/jc.2011-2803 22869843

89. Alexander EK, Pearce EN, Brent GA, Brown RS, Chen H, Dosiou C, et al. 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid. 2017;27(3):315–89. doi: 10.1089/thy.2016.0457 28056690

Článek vyšel v časopise


2020 Číslo 1