An integrated vitamin E-coated polymer hybrid nanoplatform: A lucrative option for an enhanced in vitro macrophage retention for an anti-hepatitis B therapeutic prospect


Autoři: Mohamed Hamdi aff001;  Hend Mohamed Abdel-Bar aff001;  Enas Elmowafy aff002;  Khuloud T. Al-Jamal aff003;  Gehanne A. S. Awad aff002
Působiště autorů: Department of Pharmaceutics, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt aff001;  Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Sadat City, Egypt aff002;  Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, England, United Kingdom aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227231

Souhrn

A platform capable of specifically delivering an antiviral drug to the liver infected with hepatitis B is a major concern in hepatology. Vaccination has had a major effect on decreasing the emerging numbers of new cases of infection. However, the total elimination of the hepatitis B virus from the body requires prolonged therapy. In this work, we aimed to target the liver macrophages with lipid polymer hybrid nanoparticles (LPH), combining the merit of polymeric nanoparticles and lipid vesicles. The hydrophilic antiviral drug, entecavir (E), loaded LPH nanoparticles were optimized and physicochemically characterized. A modulated lipidic corona, as well as, an additional coat with vitamin E were used to extend the drug release enhance the macrophage uptake. The selected vitamin E coated LPH nanoparticles enriched with lecithin-glyceryl monostearate lipid shell exhibited high entrapment for E (80.47%), a size ≤ 200 nm for liver passive targeting, extended release over one week, proven serum stability, retained stability after refrigeration storage for 6 months. Upon macrophage uptake in vitro assessment, the presented formulation displayed promising traits, enhancing the cellular retention in J774 macrophages cells. In vivo and antiviral activity futuristic studies would help in the potential application of the ELPH in hepatitis B control.

Klíčová slova:

Atomic force microscopy – Confocal laser microscopy – Lipids – Macrophages – Nanoparticles – Polymers – Vitamin E – Nanocarriers


Zdroje

1. Boltjes A, Movita D, Boonstra A, Woltman AM. The role of Kupffer cells in hepatitis B and hepatitis C virus infections. Journal of hepatology. 2014;61(3):660–71. doi: 10.1016/j.jhep.2014.04.026 24798624

2. Faure‐Dupuy S, Durantel D, Lucifora J. Liver macrophages: Friend or foe during hepatitis B infection? Liver international. 2018;38(10):1718–29. doi: 10.1111/liv.13884 29772112

3. Ju C, Tacke F. Hepatic macrophages in homeostasis and liver diseases: from pathogenesis to novel therapeutic strategies. Cellular & molecular immunology. 2016;13(3):316.

4. Li L, Wang H, Ong ZY, Xu K, Ee PLR, Zheng S, et al. Polymer-and lipid-based nanoparticle therapeutics for the treatment of liver diseases. Nano today. 2010;5(4):296–312.

5. Singh L, Indermun S, Govender M, Kumar P, du Toit L, Choonara Y, et al. Drug delivery strategies for antivirals against hepatitis B virus. Viruses. 2018;10(5):267.

6. Zhang C, Wang A, Wang H, Yan M, Liang R, He X, et al. Entecavir-loaded poly (lactic-co-glycolic acid) microspheres for long-term therapy of chronic hepatitis-B: Preparation and in vitro and in vivo evaluation. International journal of pharmaceutics. 2019;560:27–34. doi: 10.1016/j.ijpharm.2019.01.052 30711615

7. Singh L, Kruger HG, Maguire GE, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Therapeutic advances in infectious disease. 2017;4(4):105–31. doi: 10.1177/2049936117713593 28748089

8. He S, Lin Q, Qu M, Wang L, Deng L, Xiao L, et al. Liver-targeted co-delivery of entecavir and glycyrrhetinic acid based on albumin nanoparticle to enhance the accumulation of entecavir. Molecular pharmaceutics. 2018;15(9):3953–61. doi: 10.1021/acs.molpharmaceut.8b00408 30110554

9. Wu X, Zhou J, Xie W, Ding H, Ou X, Chen G, et al. Entecavir monotherapy versus de novo combination of lamivudine and adefovir for compensated hepatitis B virus-related cirrhosis: a real-world prospective multicenter cohort study. Infection and drug resistance. 2019;12:745. doi: 10.2147/IDR.S185120 31015765

10. Yokosuka O, Takaguchi K, Fujioka S, Shindo M, Chayama K, Kobashi H, et al. Long-term use of entecavir in nucleoside-naive Japanese patients with chronic hepatitis B infection. Journal of hepatology. 2010;52(6):791–9. doi: 10.1016/j.jhep.2009.12.036 20409606

11. Zoutendijk R, Reijnders JG, Brown A, Zoulim F, Mutimer D, Deterding K, et al. Entecavir treatment for chronic hepatitis B: adaptation is not needed for the majority of naive patients with a partial virological response. Hepatology. 2011;54(2):443–51. doi: 10.1002/hep.24406 21563196

12. Lim J-L, Ki M-H, Joo MK, An S-W, Hwang K-M, Park E-S. An injectable liquid crystal system for sustained delivery of entecavir. International journal of pharmaceutics. 2015;490(1–2):265–72. doi: 10.1016/j.ijpharm.2015.05.049 26004002

13. Ho MJ, Lee DR, Im SH, Yoon JA, Shin CY, Kim HJ, et al. Microsuspension of fatty acid esters of entecavir for parenteral sustained delivery. International journal of pharmaceutics. 2018;543(1–2):52–9. doi: 10.1016/j.ijpharm.2018.03.042 29597034

14. Tahir N, Madni A, Balasubramanian V, Rehman M, Correia A, Kashif PM, et al. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. International journal of pharmaceutics. 2017;533(1):156–68. doi: 10.1016/j.ijpharm.2017.09.061 28963013

15. Thanki K, Zeng X, Justesen S, Tejlmann S, Falkenberg E, Van Driessche E, et al. Engineering of small interfering RNA-loaded lipidoid-poly (DL-lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach. European journal of pharmaceutics and biopharmaceutics. 2017;120:22–33. doi: 10.1016/j.ejpb.2017.07.014 28756280

16. Huo ZJ, Wang SJ, Wang ZQ, Zuo WS, Liu P, Pang B, et al. Novel nanosystem to enhance the antitumor activity of lapatinib in breast cancer treatment: therapeutic efficacy evaluation. Cancer science. 2015;106(10):1429–37. doi: 10.1111/cas.12737 26177628

17. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Advanced drug delivery reviews. 2013;65(1):36–48. doi: 10.1016/j.addr.2012.09.037 23036225

18. Dehaini D, Fang RH, Luk BT, Pang Z, Hu C-MJ, Kroll AV, et al. Ultra-small lipid–polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale. 2016;8(30):14411–9. doi: 10.1039/c6nr04091h 27411852

19. Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. European journal of pharmaceutics and biopharmaceutics. 2013;85(3):427–43.

20. Bose RJ, Ravikumar R, Karuppagounder V, Bennet D, Rangasamy S, Thandavarayan RA. Lipid–polymer hybrid nanoparticle-mediated therapeutics delivery: advances and challenges. Drug discovery today. 2017;22(8):1258–65. doi: 10.1016/j.drudis.2017.05.015 28600191

21. Chaudhary Z, Ahmed N, ur. Rehman A, Khan GM. Lipid polymer hybrid carrier systems for cancer targeting: a review. International journal of polymeric materials and polymeric biomaterials. 2018;67(2):86–100.

22. Ana R, Mendes M, Sousa J, Pais A, Falcão A, Fortuna A, et al. Rethinking carbamazepine oral delivery using polymer-lipid hybrid nanoparticles. International journal of pharmaceutics. 2019;554:352–65. doi: 10.1016/j.ijpharm.2018.11.028 30439493

23. Silva EJ, Souza LG, Silva LA, Taveira SF, Guilger RC, Liao LM, et al. A novel polymer-lipid hybrid nanoparticle for the improvement of topotecan hydrochloride physicochemical properties. Current drug delivery. 2018;15(7):979–86. doi: 10.2174/1567201815666171215110026 29243576

24. Li A, Yang F, Xin J, Bai X. An efficient and long-acting local anesthetic: ropivacaine-loaded lipid-polymer hybrid nanoparticles for the control of pain. International journal of nanomedicine. 2019;14:913. doi: 10.2147/IJN.S190164 30774342

25. Liang J, Liu Y, Liu J, Li Z, Fan Q, Jiang Z, et al. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in NAFLD. Journal of nanobiotechnology. 2018;16(1):64. doi: 10.1186/s12951-018-0391-9 30176941

26. Date T, Nimbalkar V, Kamat J, Mittal A, Mahato RI, Chitkara D. Lipid-polymer hybrid nanocarriers for delivering cancer therapeutics. Journal of controlled release. 2018;271:60–73. doi: 10.1016/j.jconrel.2017.12.016 29273320

27. Zhang L, Zhang L. Lipid–polymer hybrid nanoparticles: synthesis, characterization and applications. Nano life. 2010;1(01n02):163–73.

28. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. Journal of controlled release. 2012;161(2):505–22. doi: 10.1016/j.jconrel.2012.01.043 22353619

29. Chen L-C, Chen Y-C, Su C-Y, Wong W-P, Sheu M-T, Ho H-O. Development and characterization of lecithin-based self-assembling mixed polymeric micellar (saMPMs) drug delivery systems for curcumin. Scientific reports. 2016;6:37122. doi: 10.1038/srep37122 27848996

30. Jin X, Zhang Z-H, Sun E, Tan X-B, Zhu F-X, Jia X-B. A novel drug–phospholipid complex loaded micelle for baohuoside I enhanced oral absorption: in vivo and in vivo evaluations. Drug development and industrial pharmacy. 2013;39(9):1421–30. doi: 10.3109/03639045.2012.719234 23057574

31. Yanasarn N, Sloat BR, Cui Z. Nanoparticles engineered from lecithin-in-water emulsions as a potential delivery system for docetaxel. International journal of pharmaceutics. 2009;379(1):174–80. doi: 10.1016/j.ijpharm.2009.06.004 19524029

32. Briuglia M-L, Rotella C, McFarlane A, Lamprou DA. Influence of cholesterol on liposome stability and on in vitro drug release. Drug delivery and translational research. 2015;5(3):231–42. doi: 10.1007/s13346-015-0220-8 25787731

33. Maboos M, Yousuf RI, Shoaib MH, Nasiri I, Hussain T, Ahmed HF, et al. Effect of lipid and cellulose based matrix former on the release of highly soluble drug from extruded/spheronized, sintered and compacted pellets. Lipids in health and disease. 2018;17(1):136. doi: 10.1186/s12944-018-0783-8 29885655

34. Magarkar A, Dhawan V, Kallinteri P, Viitala T, Elmowafy M, Róg T, et al. Cholesterol level affects surface charge of lipid membranes in saline solution. Scientific reports. 2014;4:5005. doi: 10.1038/srep05005 24845659

35. Gardouh AR, Gad S, Ghonaim HM, Ghorab MM. Design and characterization of glyceryl monostearate solid lipid nanoparticles prepared by high shear homogenization. British journal of pharmaceutical research. 2013;3(3):326.

36. Kumar R, Yasir M, Saraf SA, Gaur PK, Kumar Y, Singh AP. Glyceryl monostearate based nanoparticles of mefenamic acid: fabrication and in vitro characterization. Drug invention today. 2013;5(3):246–50.

37. Uppulurj KB. Self nano emulsifying drug delivery systems for oral delivery of hydrophobic drugs. Biomedical and pharmacology journal. 2015;6(2):355–62.

38. Traber MG. Vitamin E regulatory mechanisms. Annu Rev Nutr. 2007;27:347–62. doi: 10.1146/annurev.nutr.27.061406.093819 17439363

39. Lewis ED, Meydani SN, Wu D. Regulatory role of vitamin E in the immune system and inflammation. IUBMB life. 2019;71(4):487–94. doi: 10.1002/iub.1976 30501009

40. Konjufca V, Bottje W, Bersi T, Erf G. Influence of dietary vitamin E on phagocytic functions of macrophages in broilers. Poultry science. 2004;83(9):1530–4. doi: 10.1093/ps/83.9.1530 15384903

41. Zingg J-M. Vitamin E: an overview of major research directions. Molecular aspects of medicine. 2007;28(5–6):400–22. doi: 10.1016/j.mam.2007.05.004 17624418

42. Nishina K, Unno T, Uno Y, Kubodera T, Kanouchi T, Mizusawa H, et al. Efficient in vivo delivery of siRNA to the liver by conjugation of α-tocopherol. Molecular therapy. 2008;16(4):734–40.

43. Das S, Ng WK, Kanaujia P, Kim S, Tan RB. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids and surfaces b: biointerfaces. 2011;88(1):483–9. doi: 10.1016/j.colsurfb.2011.07.036 21831615

44. Shah B, Khunt D, Bhatt H, Misra M, Padh H. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: effect on formulation and characterization parameters. European journal of pharmaceutical sciences. 2015;78:54–66. doi: 10.1016/j.ejps.2015.07.002 26143262

45. Emami J, Boushehri MS, Varshosaz J. Preparation, characterization and optimization of glipizide controlled release nanoparticles. Research in pharmaceutical sciences. 2014;9(5):301. 25657802

46. Leng D, Thanki K, Fattal E, Foged C, Yang M. Engineering of budesonide-loaded lipid-polymer hybrid nanoparticles using a quality-by-design approach. International journal of pharmaceutics. 2018;548(2):740–6. doi: 10.1016/j.ijpharm.2017.08.094 28847667

47. El-Gogary RI, Rubio N, Wang JT-W, Al-Jamal WT, Bourgognon M, Kafa H, et al. Polyethylene glycol conjugated polymeric nanocapsules for targeted delivery of quercetin to folate-expressing cancer cells in vitro and in vivo. ACS nano. 2014;8(2):1384–401. doi: 10.1021/nn405155b 24397686

48. Shah VP, Tsong Y, Sathe P, Liu J-P. In vitro dissolution profile comparison—statistics and analysis of the similarity factor, f2. Pharmaceutical research. 1998;15(6):889–96. doi: 10.1023/a:1011976615750 9647355

49. Tamilselvan N, Raghavan CV. Formulation and characterization of anti alzheimer’s drug loaded chitosan nanoparticles and its in vitro biological evaluation. Journal of young pharmacists. 2015;7(1):28.

50. Zhao X, Li F, Li Y, Wang H, Ren H, Chen J, et al. Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials. 2015;46:13–25. doi: 10.1016/j.biomaterials.2014.12.028 25678112

51. Asthana S, Jaiswal AK, Gupta PK, Dube A, Chourasia MK. Th-1 biased immunomodulation and synergistic antileishmanial activity of stable cationic lipid–polymer hybrid nanoparticle: biodistribution and toxicity assessment of encapsulated amphotericin B. European journal of pharmaceutics and biopharmaceutics. 2015;89:62–73. doi: 10.1016/j.ejpb.2014.11.019 25477079

52. Sato Y, Hatakeyama H, Sakurai Y, Hyodo M, Akita H, Harashima H. A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. Journal of controlled release. 2012;163(3):267–76. doi: 10.1016/j.jconrel.2012.09.009 23000694

53. Joshi SA, Chavhan SS, Sawant KK. Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. European journal of pharmaceutics and biopharmaceutics. 2010;76(2):189–99. doi: 10.1016/j.ejpb.2010.07.007 20637869

54. Klippstein R, Wang JTW, El‐Gogary RI, Bai J, Mustafa F, Rubio N, et al. Passively targeted curcumin‐loaded pegylated PLGA nanocapsules for colon cancer therapy in vivo. Small. 2015;11(36):4704–22. doi: 10.1002/smll.201403799 26140363

55. Hodgins NO, Wang JT-W, Klippstein R, Costa PM, Sosabowski JK, Marshall JF, et al. Investigating in vitro and in vivo αvβ6 integrin receptor-targeting liposomal alendronate for combinatory γδ T cell immunotherapy. Journal of controlled release. 2017;256:141–52. doi: 10.1016/j.jconrel.2017.04.025 28432037

56. Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. International journal of nanomedicine. 2019;14:1937. doi: 10.2147/IJN.S198353 30936695

57. Sylvester B, Porfire A, Achim M, Rus L, Tomuţă I. A step forward towards the development of stable freeze-dried liposomes: a quality by design approach (QbD). Drug development and industrial pharmacy. 2018;44(3):385–97. doi: 10.1080/03639045.2017.1395457 29098869

58. Nam HY, Kwon SM, Chung H, Lee S-Y, Kwon S-H, Jeon H, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. Journal of controlled release. 2009;135(3):259–67. doi: 10.1016/j.jconrel.2009.01.018 19331853

59. Kashif PM, Madni A, Ashfaq M, Rehman M, Mahmood MA, Khan MI, et al. Development of Eudragit RS 100 microparticles loaded with ropinirole: optimization and in vitro evaluation studies. AAPS pharmscitech. 2017;18(5):1810–22. doi: 10.1208/s12249-016-0653-5 27830514

60. Gajra B, Patel RR, Dalwadi C. Formulation, optimization and characterization of cationic polymeric nanoparticles of mast cell stabilizing agent using the Box–Behnken experimental design. Drug development and industrial pharmacy. 2016;42(5):747–57. doi: 10.3109/03639045.2015.1093496 26559522

61. Morales-Cruz M, Flores-Fernández GM, Morales-Cruz M, Orellano EA, Rodriguez-Martinez JA, Ruiz M, et al. Two-step nanoprecipitation for the production of protein-loaded PLGA nanospheres. Results in pharma sciences. 2012;2:79–85. doi: 10.1016/j.rinphs.2012.11.001 23316451

62. Lalani J, Patil S, Kolate A, Lalani R, Misra A. Protein-functionalized PLGA nanoparticles of lamotrigine for neuropathic pain management. AAPS pharmscitech. 2015;16(2):413–27. doi: 10.1208/s12249-014-0235-3 25354788

63. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan M-H, Adibkia K. Box-Behnken experimental design for preparation and optimization of ciprofloxacin hydrochloride-loaded CaCO3 nanoparticles. Journal of drug delivery science and technology. 2015;29:125–31.

64. Dora CP, Singh SK, Kumar S, Datusalia AK, Deep A. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta pol pharm. 2010;67(3):283–90. 20524431

65. Devrim B, Kara A, Vural İ, Bozkır A. Lysozyme-loaded lipid-polymer hybrid nanoparticles: preparation, characterization and colloidal stability evaluation. Drug development and industrial pharmacy. 2016;42(11):1865–76. doi: 10.1080/03639045.2016.1180392 27091346

66. Hallan SS, Kaur P, Kaur V, Mishra N, Vaidya B. Lipid polymer hybrid as emerging tool in nanocarriers for oral drug delivery. Artificial cells, nanomedicine, and biotechnology. 2016;44(1):334–49. doi: 10.3109/21691401.2014.951721 25237838

67. Jung H, Ho M, Ahn S, Han Y, Kang M. Synthesis and physicochemical evaluation of entecavir-fatty acid conjugates in reducing food effect on intestinal absorption. Molecules. 2018;23(4):731.

68. Salatin S, Barar J, Barzegar-Jalali M, Adibkia K, Kiafar F, Jelvehgari M. Development of a nanoprecipitation method for the entrapment of a very water soluble drug into Eudragit RL nanoparticles. Research in pharmaceutical sciences. 2017;12(1):1. doi: 10.4103/1735-5362.199041 28255308

69. Massella D, Celasco E, Salaün F, Ferri A, Barresi A. Overcoming the limits of flash nanoprecipitation: Effective loading of hydrophilic drug into polymeric nanoparticles with controlled structure. Polymers. 2018;10(10):1092.

70. Mandal B, Mittal NK, Balabathula P, Thoma LA, Wood GC. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. European journal of pharmaceutical sciences. 2016;81:162–71. doi: 10.1016/j.ejps.2015.10.021 26517962

71. Duan R, Li C, Wang F, Yangi J-C. Polymer–lipid hybrid nanoparticles-based paclitaxel and etoposide combinations for the synergistic anticancer efficacy in osteosarcoma. Colloids and surfaces b: biointerfaces. 2017;159:880–7. doi: 10.1016/j.colsurfb.2017.08.042 28892872

72. Hu Y, Hoerle R, Ehrich M, Zhang C. Engineering the lipid layer of lipid–PLGA hybrid nanoparticles for enhanced in vitro cellular uptake and improved stability. Acta biomaterialia. 2015;28:149–59. doi: 10.1016/j.actbio.2015.09.032 26428192

73. Zhao P, Wang H, Yu M, Liao Z, Wang X, Zhang F, et al. Paclitaxel loaded folic acid targeted nanoparticles of mixed lipid-shell and polymer-core: in vitro and in vivo evaluation. European journal of pharmaceutics and biopharmaceutics. 2012;81(2):248–56. doi: 10.1016/j.ejpb.2012.03.004 22446630

74. Wang AZ, Yuet K, Zhang L, Gu FX, Huynh-Le M, Radovic-Moreno AF, et al. ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine. 2010;5(3):361–8. doi: 10.2217/nnm.10.6 20394530

75. Pagano R, Ruysschaert JM, Miller I. The molecular composition of some lipid bilayer membranes in aqueous solution. The journal of membrane biology. 1972;10(1):11–30. doi: 10.1007/bf01867845 4656230

76. Shao XR, Wei XQ, Song X, Hao LY, Cai XX, Zhang ZR, et al. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell proliferation. 2015;48(4):465–74. doi: 10.1111/cpr.12192 26017818

77. Chen R, Wang S, Zhang J, Chen M, Wang Y. Aloe-emodin loaded solid lipid nanoparticles: formulation design and in vitro anti-cancer study. Drug delivery. 2015;22(5):666–74. doi: 10.3109/10717544.2014.882446 24512431

78. Krishnamachari Y, Madan P, Lin S. Development of pH-and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. International journal of pharmaceutics. 2007;338(1–2):238–47. doi: 10.1016/j.ijpharm.2007.02.015 17368982

79. Ali MH, Kirby DJ, Mohammed AR, Perrie Y. Solubilisation of drugs within liposomal bilayers: alternatives to cholesterol as a membrane stabilising agent. Journal of pharmacy and pharmacology. 2010;62(11):1646–55. doi: 10.1111/j.2042-7158.2010.01090.x 21039548

80. Hussain T, Saeed T, Mumtaz AM, Javaid Z, Abbas K, Awais A, et al. Effect of two hydrophobic polymers on the release of gliclazide from their matrix tablets. ACTA poloniae pharmaceutica-drug research. 2013;70:749–57.

81. Zoubari G, Staufenbiel S, Volz P, Alexiev U, Bodmeier R. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. European journal of pharmaceutics and biopharmaceutics. 2017;110:39–46. doi: 10.1016/j.ejpb.2016.10.021 27810471

82. Moran-Valero MI, Ruiz-Henestrosa VMP, Pilosof AM. Synergistic performance of lecithin and glycerol monostearate in oil/water emulsions. Colloids and surfaces b: biointerfaces. 2017;151:68–75. doi: 10.1016/j.colsurfb.2016.12.015 27987457

83. Chen W, Palazzo A, Hennink WE, Kok RJ. Effect of particle size on drug loading and release kinetics of gefitinib-loaded PLGA microspheres. Molecular pharmaceutics. 2016;14(2):459–67. doi: 10.1021/acs.molpharmaceut.6b00896 27973854

84. Win KY, Feng S-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26(15):2713–22. doi: 10.1016/j.biomaterials.2004.07.050 15585275

85. Aeschimann W, Staats S, Kammer S, Olieric N, Jeckelmann J-M, Fotiadis D, et al. Self-assembled α-tocopherol transfer protein nanoparticles promote vitamin E delivery across an endothelial barrier. Scientific reports. 2017;7(1):4970. doi: 10.1038/s41598-017-05148-9 28694484

86. Rigotti A. Absorption, transport, and tissue delivery of vitamin E. Molecular aspects of medicine. 2007;28(5–6):423–36. doi: 10.1016/j.mam.2007.01.002 17320165

87. Kulkarni SA, Feng S-S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharmaceutical research. 2013;30(10):2512–22. doi: 10.1007/s11095-012-0958-3 23314933

88. Bongiorno D, Ceraulo L, Ferrugia M, Filizzola F, Longo A, Mele A, et al. Interactions of α-tocopherol with biomembrane models: Binding to dry lecithin reversed micelles. International journal of pharmaceutics. 2006;312(1–2):96–104. doi: 10.1016/j.ijpharm.2006.01.017 16481134

89. Mustafa S, Devi VK, Pai RS. Kanamycin sulphate loaded PLGA-vitamin-E-TPGS long circulating nanoparticles using combined coating of PEG and water-soluble chitosan. Journal of drug delivery. 2017;2017.

90. Meng R, Li K, Chen Z, Shi C. Multilayer coating of tetrandrine-loaded PLGA nanoparticles: Effect of surface charges on cellular uptake rate and drug release profile. Journal of Huazhong university of science and technology [medical sciences]. 2016;36(1):14–20. doi: 10.1007/s11596-016-1535-5 26838734

91. D’Addio SM, Bukari AA, Dawoud M, Bunjes H, Rinaldi C, Prud’homme RK. Determining drug release rates of hydrophobic compounds from nanocarriers. Philosophical transactions of the royal society a: mathematical, physical and engineering sciences. 2016;374(2072):20150128.

92. Chan JM, Zhang L, Yuet KP, Liao G, Rhee J-W, Langer R, et al. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30(8):1627–34. doi: 10.1016/j.biomaterials.2008.12.013 19111339

93. Dobrovolskaia MA, Clogston JD, Neun BW, Hall JB, Patri AK, McNeil SE. Method for analysis of nanoparticle hemolytic properties in vitro. Nano letters. 2008;8(8):2180–7. doi: 10.1021/nl0805615 18605701

94. Ishak RA, Mostafa NM, Kamel AO. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery–comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution. Drug delivery. 2017;24(1):1874–90. doi: 10.1080/10717544.2017.1410263 29191047

95. Pooja D, Kulhari H, Singh MK, Mukherjee S, Rachamalla SS, Sistla R. Dendrimer–TPGS mixed micelles for enhanced solubility and cellular toxicity of taxanes. Colloids and surfaces b: biointerfaces. 2014;121:461–8. doi: 10.1016/j.colsurfb.2014.06.059 25063311

96. Sengel-Turk CT, Hascicek C. Design of lipid-polymer hybrid nanoparticles for therapy of BPH: Part I. Formulation optimization using a design of experiment approach. Journal of drug delivery science and technology. 2017;39:16–27.

97. Abdel-Bar HM, el Basset Sanad RA. Endocytic pathways of optimized resveratrol cubosomes capturing into human hepatoma cells. Biomedicine & pharmacotherapy. 2017;93:561–9.


Článek vyšel v časopise

PLOS One


2020 Číslo 1