Fungal diversity in canopy soil of silver beech, Nothofagus menziesii (Nothofagaceae)


Autoři: Andy R. Nilsen aff001;  Suliana E. Teasdale aff001;  Paul L. Guy aff001;  Tina C. Summerfield aff001;  David A. Orlovich aff001
Působiště autorů: Department of Botany, University of Otago, Dunedin, New Zealand aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227860

Souhrn

Adventitious roots in canopy soils associated with silver beech (Nothofagus menziesii Hook.f. (Nothofagaceae)) form ectomycorrhizal associations. We investigated the extent to which canopy ectomycorrhizal communities contribute to overall diversity of ectomycorrhizal fungi associated with silver beech. Hyphal ingrowth bags were buried for 12 months in canopy and terrestrial soils of five trees at one site. We used amplicon sequencing of the nuclear ribosomal internal transcribed spacer 2 region (ITS2) to assess diversity of both ectomycorrhizal and non-ectomycorrhizal OTUs in hyphal ingrowth bags. There was a significant difference in ectomycorrhizal fungal community diversity between the terrestrial and canopy hyphal ingrowth bag communities. Ectomycorrhizal community composition of the terrestrial and canopy environments was also significantly different. Some ectomycorrhizal taxa were significantly differentially represented in either the terrestrial or canopy environment. The hyphal ingrowth bags also accumulated non-ectomycorrhizal species. The non-ectomycorrhizal fungi also had significantly different diversity and community composition between the canopy and terrestrial environments. Like the ectomycorrhizal community, some non-ectomycorrhizal taxa were significantly differentially represented in either the terrestrial or canopy environment. The canopy soil microhabitat provides a novel environment for growth of ectomycorrhizal adventitious roots and enables the spatial partitioning of ectomycorrhizal and non-ectomycorrhizal fungal diversity in the forest.

Klíčová slova:

Dendrology – Forests – Fungi – Phylogenetic analysis – Polymerase chain reaction – Terrestrial environments – Trees – Beeches


Zdroje

1. Zotz G. Plants on Plants—The Biology of Vascular Ecosystems. Switzerland: Springer; 2016.

2. Hofstede RGM, Dickinson KJM, Mark AF. Distribution, abundance and biomass of epiphyte-lianoid communities in a New Zealand lowland Nothofagus-podocarp temperate rain forest: tropical comparisons. J Biogeogr. 2001;28(8):1033–49. doi: 10.1046/j.1365-2699.2001.00613.x WOS:000172540400008.

3. Nieder J, Prosperi J, Michaloud G. Epiphytes and their contribution to canopy diversity. Plant Ecol. 2001;153(1–2):51–63. doi: 10.1023/A:1017517119305 WOS:000170943700006.

4. Rains KC, Nadkarni NM, Bledsoe CS. Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza. 2003;13(5):257–64. doi: 10.1007/s00572-003-0224-y WOS:000186280200003. 14593519

5. Grippa CR, Hoeltgebaum MP, Sturmer SL. Occurrence of arbuscular mycorrhizal fungi in bromeliad species from the tropical Atlantic forest biome in Brazil. Mycorrhiza. 2007;17(3):235–40. doi: 10.1007/s00572-006-0090-5 WOS:000245852000009. 17151876

6. Lindo Z, Whiteley JA. Old trees contribute bio-available nitrogen through canopy bryophytes. Plant Soil. 2011;342(1–2):141–8. doi: 10.1007/s11104-010-0678-6 WOS:000289562000011.

7. Wardle DA, Yeates GW, Barker GM, Bellingham PJ, Bonner KI, Williamson WM. Island biology and ecosystem functioning in epiphytic soil communities. Science. 2003;301(5640):1717–20. doi: 10.1126/science.1087809 WOS:000185387700043. 14500981

8. Nadkarni NM. Canopy roots—convergent evolution in rainforest nutrient cycles. Science. 1981;214(4524):1023–4. doi: 10.1126/science.214.4524.1023 WOS:A1981MQ49300022. 17808667

9. Hertel D. Tree roots in canopy soils of old European beech trees—An ecological reassessment of a forgotten phenomenon. Pedobiologia. 2011;54(2):119–25. doi: 10.1016/j.pedobi.2010.11.003 WOS:000289012700009.

10. Orlovich DA, Draffin SJ, Daly RA, Stephenson SL. Piracy in the high trees: ectomycorrhizal fungi from an aerial 'canopy soil' microhabitat. Mycologia. 2013;105(1):52–60. doi: 10.3852/11-307 WOS:000314387000004. 22778170

11. Hertel D, Kohler L, Rillig MC. Mycorrhizal, endophytic and ecomorphological status of tree roots in the canopy of a montane rain forest. Biotropica. 2011;43(4):401–4. doi: 10.1111/j.1744-7429.2011.00792.x WOS:000292804100003.

12. Nadkarni NM, Schaefer D, Matelson TJ, Solano R. Comparison of arboreal and terrestrial soil characteristics in a lower montane forest, Monteverde, Costa Rica. Pedobiologia. 2002;46(1):24–33. doi: 10.1078/0031-4056-00110 WOS:000174755100003.

13. Longcore JE. Zoosporic fungi from Australian and New Zealand tree-canopy detritus. Aust J Bot. 2005;53(3):259–72. doi: 10.1071/Bt04048 WOS:000229339400009.

14. Stephenson SL, Landolt JL. Occurrence of myxomycetes in the aerial “canopy soil” microhabitat. Mycosphere. 2015;6(1):74–7. doi: 10.5943/mycosphere/6/1/9 WOS:000363227700009.

15. Stephenson SL, Kahlert B. Myxomycetes associated with canopy organic matter in temperate rainforests of southern New Zealand. Phytotaxa. 2018;360(2):161–6. doi: 10.11646/phytotaxa.360.2.8

16. Wallander H, Nilsson LO, Hagerberg D, Baath E. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytologist. 2001;151(3):753–60. doi: 10.1046/j.0028-646x.2001.00199.x WOS:000170712800021.

17. Bastias BA, Xu ZH, Cairney JWG. Influence of long-term repeated prescribed burning on mycelial communities of ectomycorrhizal fungi. New Phytol. 2006;172(1):149–58. doi: 10.1111/j.1469-8137.2006.01793.x WOS:000239988100016. 16945097

18. Kjøller R. Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia. Fems Microbiol Ecol. 2006;58(2):214–24. doi: 10.1111/j.1574-6941.2006.00166.x WOS:000241367500006. 17064263

19. Orlovich DA, Cairney JWG. Ectomycorrhizal fungi in New Zealand: current perspectives and future directions. New Zealand Journal of Botany. 2004;42(5):721–38. doi: 10.1080/0028825x.2004.9512926 WOS:000226773300001.

20. Baylis GTS. Mycorrhizas and the spread of beech. New Zeal J Ecol. 1980;3:151–3.

21. Smith ME, Henkel TW, Williams GC, Aime MC, Fremier AK, Vilgalys R. Investigating niche partitioning of ectomycorrhizal fungi in specialized rooting zones of the monodominant leguminous tree Dicymbe corymbosa. New Phytol. 2017;215(1):443–53. doi: 10.1111/nph.14570 WOS:000402413100037. 28493414

22. Beever RE. Dispersal of truffle-like fungi in New Zealand. Southern Temperate Ecosystems: Origin and Diversification; 18–22 January; Hobart, Tasmania. 1993.

23. Beever RE, Lebel T. Truffles of New Zealand: a discussion of bird dispersal characteristics of fruit bodies. Journal of the Auckland Botanical Society. 2014;69:170–8.

24. Mark AF. Te Wāhipounamu: South-west New Zealand World Heritage Area. Ecological research and conservation history. J Roy Soc New Zeal. 1998;28(4):657–84. doi: 10.1080/03014223.1998.9517579 WOS:000077838400005.

25. Richardson SJ, Hurst JM, Easdale TA, Wiser SK, Griffiths AD, Allen RB. Diameter growth rates of beech (Nothofagus) trees around New Zealand. NZ Journal of Forestry. 2011;56:3–11.

26. Toju H, Tanabe AS, Yamamoto S, Sato H. High-coverage ITS primers for the DNA-based identification of ascomycetes and basidiomycetes in environmental samples. Plos One. 2012;7(7). doi: 10.1371/journal.pone.0040863 WOS:000306366400063. 22808280

27. White TJ, Bruns T, Lee S, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR Protocols: A Guide to Methods and Applications. New York: Academic Press; 1990. p. 315–22.

28. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. doi: 10.1093/bioinformatics/btq461 WOS:000282170000016. 20709691

29. Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol. 2013;4(10):914–9. doi: 10.1111/2041-210x.12073 WOS:000325459600003.

30. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–+. doi: 10.1038/nmeth.2604 WOS:000325073800023. 23955772

31. Edgar RC. SINTAX, a simple non-Bayesian taxonomy classifier for 16S and ITS sequences. bioRχiv. 2016. doi: 10.1101/074161

32. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6. doi: 10.1038/nmeth.f.303 WOS:000277175100003. 20383131

33. Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8. doi: 10.1016/j.funeco.2015.06.006 WOS:000373539100029.

34. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. doi: 10.1093/nar/25.17.3389 WOS:A1997XU79300002. 9254694

35. Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22(21):5271–7. doi: 10.1111/mec.12481 WOS:000325990500001. 24112409

36. McMurdie PJ, Holmes S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. Plos One. 2013;8(4). doi: 10.1371/journal.pone.0061217 WOS:000317911500023. 23630581

37. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. R Package. 2.4–2 ed2017.

38. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Liaw WHA, Lumley T, et al. gplots: Various R Programming Tools for Plotting Data. R Package. 3.0.1 ed2016.

39. Ploner A. Heatplus: Heatmaps with row and/or column covariates and colored clusters. R Package. 2.26.0 ed2015.

40. Neuwirth E. RColorBrewer. R Package. 1.1–2 ed2014.

41. Beker HJ, Eberhardt U, Vesterholt J. Hebeloma hiemale Bres. in arctic/alpine habitats. North American Fungi. 2010;5(4):51–65. doi: 10.2509/naf2010.005.0054

42. Eberhardt U, Beker HJ, Vesterholt J, Schutz N. The taxonomy of the European species of Hebeloma section Denudata subsections Hiemalia, Echinospora subsect. nov and Clepsydroida subsect. nov and five new species. Fungal Biol-Uk. 2016;120(1):72–103. doi: 10.1016/j.funbio.2015.09.014 WOS:000368754200006. 26693686

43. Rees BJ, Midgley DJ, Marchant A, Perkins A, Orlovich DA. Morphological and molecular data for Australian Hebeloma species do not support the generic status of Anamika. Mycologia. 2013;105(4):1043–58. doi: 10.3852/12-404 WOS:000322849500019. 23709478

44. Horak E, Wood AE. Cortinarius Fr. (Agaricales) in Australasia. 1. Subgen. Myxacium and subgen. Paramyxacium. Sydowia. 1990;42:88–168.

45. Bödeker TM, Nygren CMR, Taylor AS, O’lson O, Lindahl BDD, A. ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi. The ISME Journal. 2009;3:1387–95. doi: 10.1038/ismej.2009.77 19571893

46. Curlevski NJA, Xu ZH, Anderson IC, Cairney JWG. Soil fungal communities differ in native mixed forest and adjacent Araucaria cunninghamii plantations in subtropical Australia. J Soil Sediment. 2010;10(7):1278–88. doi: 10.1007/s11368-010-0239-x WOS:000285087500008.

47. Frøslev TG, Kjøller R, Bruun HH, Ejrnæs R, Brunbjerg AK, Pietroni C, et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat Commun. 2017;8. doi: 10.1038/s41467-017-01312-x WOS:000413894100010. 29084957

48. Brown SP, Veach AM, Rigdon-Huss AR, Grond K, Lickteig SK, Lothamer K, et al. Scraping the bottom of the barrel: are rare high throughput sequences artifacts? Fungal Ecol. 2015;13:221–5.

49. Hertel D, Kohler L. Are tree roots in the canopy ecologically important? A critical reassessment from a case study in a tropical montane rainforest. Plant Ecol Divers. 2010;3(2):141–50. doi: 10.1080/17550874.2010.511293 WOS:000284632400005.

50. Johnston PR. Causes and consequences of changes to New Zealand's fungal biota. New Zeal J Ecol. 2010;34(1):175–84. WOS:000273519300011.

51. Teasdale SE, Beulke AK, Guy PL, Orlovich DA. Environmental barcoding of the ectomycorrhizal fungal genus Cortinarius. Fungal Divers. 2013;58(1):299–310. doi: 10.1007/s13225-012-0218-1 WOS:000313366900019.

52. Averill C, Hawkes CV. Ectomycorrhizal fungi slow soil carbon cycling. Ecol Lett. 2016;19(8):937–47. doi: 10.1111/ele.12631 WOS:000379966300012. 27335203


Článek vyšel v časopise

PLOS One


2020 Číslo 1