Radioiodine therapy and Graves’ disease – Myths and reality

Autoři: Maria Teresa Plazinska aff001;  Nadia Sawicka-Gutaj aff002;  Agata Czarnywojtek aff002;  Kosma Wolinski aff002;  Małgorzata Kobylecka aff001;  Maria Karlińska aff004;  Karolina Prasek aff001;  Małgorzata Zgorzalewicz-Stachowiak aff005;  Magdalena Borowska aff003;  Paweł Gut aff002;  Marek Ruchala aff002;  Leszek Krolicki aff001
Působiště autorů: Department of Nuclear Medicine, Warsaw Medical University, Warsaw, Poland aff001;  Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland aff002;  Department of Pharmacology, Poznan University of Medical Sciences, Poznan, Poland aff003;  Department of Medical Informatics and Telemedicine, Warsaw Medical University, Warsaw, Poland aff004;  Laboratory of Medical Electrodiagnostics, Department of Health Prophylaxis, Poznan University of Medical Sciences, Poznan, Poland aff005
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226495



Autoimmune reactions in Graves’ disease (GD) occur not only in the thyroid gland, but also in the orbital connective tissue, eyelids, extraocular muscles. The occurrence of orbitopathy in the course of GD is influenced by environmental factors, e.g. cigarette smoking.


The aim of the study was to analyze the effect of cigarette smoking on the efficacy of activity of radioiodine(131I) therapy in patients with GD. We also studied the influence of cigarette smoking and the efficacy of prednisone prophylaxis on the risk of thyroid-associated ophthalmopathy (TAO) development after radioiodine therapy (RIT) during two years of follow-up.

Patients and methods

Medical records of hyperthyroid patients treated with radioiodine had been included. Patients were scheduled to visit outpatient clinics at baseline and 1, 3, 6, 9, 12, 18, and 24 months after RIT.


The studied group consisted of 336 patients (274 women, 62 men) diagnosed with GD and treated with RIT; 130 patients received second therapeutic dose of 131I due to recurrent hyperthyroidism. Among all studied patients, 220 (65.5%) were smokers and 116 (34.5%) non-smokers. In the group of smokers 115 (52.2%) of patients received single RIT, 105 (47.8%) received second dose of RAI due to recurrent hyperthyroidism. In non-smokers 91 (78.6%) received single activity of RAI, while 25 (21.4%) patients required second RIT due to recurrent hyperthyroidism. The ophthalmic symptoms in the group of smokers after RIT were less frequent, if the patient received preventative treatment in the form of oral prednisone (P = 0.0088).


The results of our study suggest that cigarette smoking reduces the efficacy of treatment with 131I in patients with GD. The study also confirmed the effectiveness of steroid prophylaxis against TAO development or exacerbation after RIT.

Klíčová slova:

Outpatient clinics – Prophylaxis – Smoking habits – Steroids – Thyroid – Thyroid hormones – Thyroid-stimulating hormone – Graves' disease


1. Cooper DS. Hyperthyroidism. Lancet. 2003; 362: 459−468. doi: 10.1016/S0140-6736(03)14073-1 12927435

2. Brent GA. Clinical practice. Graves' disease. N Engl J Med. 2008; 358: 2594−2605. doi: 10.1056/NEJMcp0801880 18550875

3. Brand OJ, Gough SCL. Genetics of thyroid autoimmunity and the role of the TSHR. Mol Cell Endocrinol. 2010; 322: 135–143. doi: 10.1016/j.mce.2010.01.013 20083159

4. Kamijo K, Murayama H, Uzu T, Togashi K, Kahaly GJ. A novel bioreporter assay for thyrotropin receptor antibodies using a chimeric thyrotropin receptor (mc4) is more useful in differentiation of Graves' disease from painless thyroiditis than conventional thyrotropin-stimulating antibody assay using porcine thyroid cells. Thyroid. 2010; 20: 851–856. doi: 10.1089/thy.2010.0059 20615137

5. Prabhakar BS, Bahn RS, Smith TJ. Current perspective on the pathogenesis of Graves`disease and ophthalmopathy. Endocrine Reviews 2003; 24: 802–35. doi: 10.1210/er.2002-0020 14671007

6. Bartalena L, Tanda ML. Clinical practice. Graves' ophthalmopathy. N Engl J Med. 2009; 360: 994−1001. doi: 10.1056/NEJMcp0806317 19264688

7. Tanda ML, Piantanida E, Liparulo L, Veronesi G, Lai A, Sassi L, et al. Prevalence and natural history of Graves' orbitopathy in a large series of patients with newly diagnosed Graves' hyperthyroidism seen at a single center. J Clin Endocrinol Metab. 2013; 98: 1443−1449. doi: 10.1210/jc.2012-3873 23408569

8. Piantanida E, Tanda ML, Lai A, Sassi L, Bartalena L. Prevalence and natural history of Graves' orbitopathy in the XXI century. J Endocrinol Invest. 2013; 36: 444−449. doi: 10.3275/8937 23587873

9. Bartalena L, Baldeschi L, Boboridis K, Eckstein A, Kahaly GJ, Marcocci C, et al. The 2016 European Thyroid Association/European Group on Graves' Orbitopathy Guidelines for the Management of Graves' Orbitopathy. Eur Thyroid J. 2016 Mar;5(1):9–26. doi: 10.1159/000443828 27099835

10. Weetman AP. Graves' disease. N Engl J Med. 2000; 343: 1236−1248. doi: 10.1056/NEJM200010263431707 11071676

11. Czarnywojtek A, Kurdycha P, Florek E, Warmuz-Stangierska J, Waligórska M, Ruchała M, et al. Risk factors influence on Graves' disease and Graves' ophthalmopathy. Przegl Lek. 2011; 68: 1010−1014.

12. Cawood TJ, Moriarty P, O’Farrelly C, O'Shea D. Smoking and thyroid-associated ophthalmopathy: A novel explanation of the biological link. J Clin Endocrinol Metab. 2007; 92: 59–64. doi: 10.1210/jc.2006-1824 17047020

13. Eckstein A, Quadbeck B, Mueller G, Rettenmeier AW, Hoermann R, Mann K, et al. Impact of smoking on the response to treatment of thyroid associated ophthalmopathy. Br J Ophthalmol. 2003; 87: 773–776. doi: 10.1136/bjo.87.6.773 12770979

14. Träisk F, Tallstedt L, Abraham-Nordling M, Andersson T, Berg G, Calissendorff J, et al. Thyroid-associated ophthalmopathy after treatment for Graves' hyperthyroidism with antithyroid drugs or iodine-131. J Clin Endocrinol Metab. 2009; 94: 3700–3707. doi: 10.1210/jc.2009-0747 19723755

15. Cunnien AJ, Hay ID, Gorman CA, Offord KP, Scanlon PW. Radioiodine-induced hypothyroidism in Graves’ disease: factors associated. J Nucl Med. 1982; 23: 978–983. 6897075

16. de Bruin TW, Croon CD, de Klerk JM, van Isselt JW. Standardized radioiodine therapy in Graves’ disease: the persistent effect of thyroid weight and radioiodine uptake on outcome. J Intern Med. 1994; 236: 507–513. doi: 10.1111/j.1365-2796.1994.tb00837.x 7964426

17. Hernandez-Jiménez S, Pachon-Burgos A, Aguilar-Salinas CA, Andrade V, Reynoso R, Ríos A, et al. Radioiodine treatment in autoimmune hyperthyroidism: analysis of outcomes in relation to dosage. Arch Med Res. 2007; 38: 185–189. doi: 10.1016/j.arcmed.2006.09.007 17227727

18. Ruchała M, Sawicka-Gutaj N. Advances in the pharmacological treatment of Graves’ orbitopathy. Expert review of clinical pharmacology 2016; 9: 981–989. doi: 10.1586/17512433.2016.1165606 26966785

19. Ruchała M, Szczepanek E. Thyroid ultrasound—a piece of cake? Endokrynol Pol 2011; 61: 330–344.

20. Laurberg P, Wallin G, Tallsted L, Abraham-Nordling M, Lundell G, Tørring O. TSH-receptor autoimmunity in Graves' disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. Eur J Endocrinol. 2008; 158: 69–75. doi: 10.1530/EJE-07-0450 18166819

21. Sawicka N, Sowiński J. Correlation between thyroid volume and humoral thyroid autoimmunity after radioiodine therapy in Graves’ disease. Endokrynol Pol. 2012; 63: 10–13. 22378091

22. Acharya SH, Avenell A, Philip S, Burr J, Bevan JS, Abraham P. Radioiodine therapy (RAI) for Graves' disease (GD) and the effect on ophthalmopathy: a systematic review. Clin Endocrinol (Oxf). 2008; 69: 943–950.

23. Sztal-Mazer S, Nakatani VY, Bortolini LG, Boguszewski CL, Graf H, de Carvalho GA. Evidence for higher success rates and successful treatment earlier in Graves’ disease with higher radioactive iodine doses. Thyroid. 2012; 22: 991–995. doi: 10.1089/thy.2011.0362 22953990

24. Vaidya B, Williams GR, Abraham P, Pearce SH. Radioiodine treatment for benign thyroid disorders: results of a nationwide survey of UK endocrinologists. Clin Endocrinol (Oxf). 2008; 68: 814–820.

25. Stokkel MPM, Handkiewicz-Junak D, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010; 37: 2218–2228. doi: 10.1007/s00259-010-1536-8 20625722

26. Sawicka-Gutaj N, Gutaj P, Sowiński J, Wender-Ożegowska E, Czarnywojtek A, Brązert J, et al. Influence of cigarette smoking on thyroid gland—an update. Endokrynol Pol. 2014; 65: 54–62. doi: 10.5603/EP.2014.0008 24549603

27. Vestergaard P. Smoking and thyroid disorders–a meta-analysis. Eur J Endocrinol. 2002; 146: 153–161. doi: 10.1530/eje.0.1460153 11834423

28. Quadbeck B, Roggenbuck U, Janssen OE, Hahn S, Mann K, Hoermann R, et al. Impact of smoking on the course of Graves’ disease after withdrawal of antithyroid drugs. Exp Clin Endocrinol Diabetes. 2006; 114: 406–411. doi: 10.1055/s-2006-924065 17039420

29. Mehran L, Amouzgar A, Delshad H, Azizi F. The association of cigarette smoking with serum TSH concentration and thyroperoxidase antibody. Exp Clin Endocrinol Diabetes. 2012; 120: 80–83. doi: 10.1055/s-0031-1285910 21915816

30. Cho NH, Choi HS, Kim KW, Kim HL, Lee SY, Choi SH, et al. Interaction between cigarette smoking and iodine intake and their impact on thyroid function. Clin Endocrinol (Oxf). 2010; 73: 264–270.

31. Asvold B, Bjøro T, Nilsen TIL, Vatten LJ. Tobacco smoking and thyroid function: a population-based study. Arch Intern Med. 2007; 167: 1428–1432. doi: 10.1001/archinte.167.13.1428 17620538

32. Jorde R, Sundsfjord J. Serum TSH levels in smoking and non-smoking patients. The 5th Tromsø study. Exp Clin Endocrinol Diabetes. 2006; 114: 343–347. doi: 10.1055/s-2006-924264 16915535

33. Belin RM, Astor BC, Powe NR, Ladenson PW. Smoke exposure is associated with a lower prevalence of serum thyroid autoantibodies and thyrotropin concentration elevation and a higher prevalence of mild thyrotropin concentration suppression in the Third National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2004; 89: 6077–6086. doi: 10.1210/jc.2004-0431 15579761

34. Vejbjerg P, Knudsen N, Perrild H, et al. The impact of smoking on thyroid volume and function in relation to a shift towards iodine sufficiency. Eur J Epidemiology. 2008; 23: 423–429.

35. Knudsen N, Bulow I, Laurberg P, Carlé A, Laurberg P, Pedersen IB, et al. Association of tobacco smoking with goiter in a low-iodine intake area. Arch Intern Med. 2002; 162: 439–443. doi: 10.1001/archinte.162.4.439 11863477

36. Bałdys–Waligórska A, Stefańska A, Gołkowski F, Sokolowski G, Hubalewska-Dydejczyk A. Evaluation of radioiodine 131I treatment in Graves' disease patients with mild orbitopathy. Przegl Lek. 2009; 66: 166–169. 19708504

37. Schneider DF, Sonderman PE, Jones MF, Ojomo KA, Chen H, Jaume JC, et al. Failure of radioactive iodine in the treatment of hyperthyroidism. Ann Surg Oncol. 2014; 21: 4174–4180. doi: 10.1245/s10434-014-3858-4 25001092

38. Leslie WD, Ward L, Salamon EA, Ludwig S, Rowe RC, Cowden EA. randomized comparison of radioiodine doses in Graves hyperthyroidism. J Clin Endocrinol Metab. 2003; 88: 978–983. doi: 10.1210/jc.2002-020805 12629071

39. Haase A, Bahre M, Lauer I, Meller B, Richter E. Radioiodine therapy in Graves hyperthyroidism: determination of individual optimum target dose. Exp Clin Endocrinol Diabetes. 2000; 108: 133–137. doi: 10.1055/s-2000-5807 10826521

40. Howarth D, Epstein M, Lan L, Meller B, Richter E. Determination of the optimal minimum radioiodine dose in patients with Graves disease: a clinical outcome study. Eur J Nucl Med. 2001; 28: 1489–1495. doi: 10.1007/s002590100621 11685491

41. Alexander EK, Larsen PR. High dose of 131I therapy for the treatment of hyperthyroidism caused by Graves’ disease. J Clin Endocrinol Metab. 2002; 87: 1073–1077. doi: 10.1210/jcem.87.3.8333 11889166

42. Nwatsock JF, Taieb D, Tessonnier L, Mancini J, Dong-A-Zok F, Mundler O. Radioiodine Thyroid Ablation in Graves’ Hyperthyroidism: Merits and Pitfalls. World J Nucl Med. 2012; 11: 7–11. doi: 10.4103/1450-1147.98731 22942775

43. Laurberg P, Wallin G, Tallstedt L, Abraham-Nordling M, Lundell G, Tørring O. TSH-receptor autoimmunity in Graves' disease after therapy with anti-thyroid drugs, surgery, or radioiodine: a 5-year prospective randomized study. Eur J Endocrinol 2008; 158: 69–75. doi: 10.1530/EJE-07-0450 18166819

44. Bartalena L, Pinchera A, Marcocci C. Management of Graves' ophthalmopathy: reality and perspectives. Endocr Rev. 2000; 21: 168−199. doi: 10.1210/edrv.21.2.0393 10782363

45. Lantz M, Planck T, Asman P, Hallengren B. Increased TRAb and/or Low Anti-TPO Titers at Diagnosis of Graves’ Disease are Associated with an Increased Risk of Developing Ophthalmopathy after Onset. Exp Clin Endocrinol Diabetes. 2014; 122: 113–117. doi: 10.1055/s-0033-1363193 24554511

46. Bartalena L. Diagnosis and management of Graves’ disease: a global overview. Nat Rev Endocrinol. 2013; 9: 724−734. doi: 10.1038/nrendo.2013.193 24126481

47. Czarnywojtek A, Komar-Rychlicka K, Zgorzalewicz-Stachowiak M, Sawicka-Gutaj N, Woliński K, Gut P, et al. Efficacy and safety of radioiodine therapy for mild Graves ophthalmopathy depending on cigarette consumption: a 6-month follow-up. Pol Arch Med Wewn. 2016; 126: 746–753. doi: 10.20452/pamw.3505 27534827

48. Bartalena L. Editorial: glucocorticoids for Graves' ophthalmopathy: how and when. J Clin Endocrinol Metab. 2005; 90: 5497–5499. doi: 10.1210/jc.2005-1553 16148347

49. Perros P, Kendall-Taylor P, Neoh C, Frewin S, Dickinson J. A prospective study of the effects of radioiodine therapy for hyperthyroidism in patients with minimally active Graves’ ophthalmopathy. J Clin Endocrinol Metab. 2005; 90: 5321–5323. doi: 10.1210/jc.2005-0507 15985483

50. Dederichs B, Dietlein M, Jenniches-Kloth B, Schmidt M, Theissen P, Moka D, et al. Radioiodine Therapy of Graves' Hyperthyroidism in Patients Without Pre-existing Ophthalmopathy: Can Glucocorticoids Prevent the Development of New Ophthalmopathy? Exp Clin Endocrinol Diabetes. 2006; 114: 366–370. doi: 10.1055/s-2006-924321 16915539

Článek vyšel v časopise


2020 Číslo 1