#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Pupil response to noxious corneal stimulation


Autoři: Emmanuel B. Alabi aff001;  Trefford L. Simpson aff001
Působiště autorů: University of Waterloo, School of Optometry and Vision Science, Waterloo, ON, Canada aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227771

Souhrn

Purpose

Ocular somatosensory-autonomic reflexes play critical roles in maintaining homeostasis of the eye. The purpose of this study was to investigate the pupil response to nociceptive corneal stimuli.

Methods

A Waterloo-Belmonte pneumatic esthesiometer was used to determine detection thresholds and randomly deliver mechanical and chemical stimuli from levels of detection threshold to twice the threshold in 50% steps to the central cornea of 15 healthy subjects. For each stimulus, imaging of the stimulated/unstimulated eye was performed using two modified/calibrated Logitech c920 digital cameras for 4 seconds each, pre/post stimulus capture. The data were processed with a custom segmentation algorithm to help identify the pupils and pupil diameter was measured using ImageJ software. Pupil dilation response differences between the ipsi- and contralateral eye was analyzed using dependent t-tests. The effect of stimulus intensity, modality and sex of subjects were analyzed using repeated measures.

Results

In mechanical and chemical stimulation experiments, there was no difference in pupil responses between the stimulated eye and the unstimulated eye, (all dependent T-test p > 0.05). On average, pupil diameter increased from baseline as the corneal stimulus intensity increased. This happened regardless of whether mechanical or chemical stimulation occurred (ANOVA p < 0.05). At 200% threshold, pupil diameter was greater than at all stimulus intensities (Tukey HSD, all p < 0.05). Based on stimulus intensity, females had greater pupil diameters than males at levels of 150% threshold and 200% threshold (ANOVA p < 0.05, all Tukey HSD p < 0.05).

Conclusion

This study serves as a basis for the characterization of the local stimulus-response neural circuitry relating nociceptive stimuli to autonomic responses and in combination with our work on completely separate autonomic circuits of bulbar conjunctival vessel dilation and reflex tearing suggests that the monotonic measurements of redness, tearing and pupils provide accurate, separable responses that reflect painful stimulus intensity.

Klíčová slova:

Carbon dioxide – Cornea – Eye muscles – Eyes – Neural pathways – Pain sensation – Pupil – Reflexes


Zdroje

1. Merskey H, Bogduk N (1994) Classification of chronic pain, IASP Task Force on Taxonomy. Seattle, WA: International Association for the Study of Pain Press.

2. Rosenthal P, Borsook D (2012) The corneal pain system. Part I: the missing piece of the dry eye puzzle. The Ocular Surface 10: 2–14. doi: 10.1016/j.jtos.2012.01.002 22330055

3. Jensen MP, Karoly P, Harris P (1991) Assessing the affective component of chronic pain: development of the Pain Discomfort Scale. Journal of Psychosomatic Research 35: 149–154. doi: 10.1016/0022-3999(91)90069-z 2046049

4. Casey KL, Minoshima S, Berger KL, Koeppe RA, Morrow TJ, Frey KA. (1994) Positron emission tomographic analysis of cerebral structures activated specifically by repetitive noxious heat stimuli. Journal of Neurophysiology 71: 802–807. doi: 10.1152/jn.1994.71.2.802 8176441

5. Chen AC (1993) Human brain measures of clinical pain: a review I. Topographic mappings. Pain 54: 115–132. doi: 10.1016/0304-3959(93)90200-9 8233525

6. Coghill RC, Talbot JD, Evans AC, Meyer E, Gjedde A, Bushnell MC, et al. (1994) Distributed processing of pain and vibration by the human brain. Journal of Neuroscience 14: 4095–4108. doi: 10.1523/JNEUROSCI.14-07-04095.1994 8027764

7. Donaldson GW, Chapman CR, Nakamura Y, Bradshaw DH, Jacobson RC, Chapman CN. (2003) Pain and the defense response: structural equation modeling reveals a coordinated psychophysiological response to increasing painful stimulation. Pain 102: 97–108. doi: 10.1016/s0304-3959(02)00351-2 12620601

8. Colloca L, Benedetti F, Pollo A (2006) Repeatability of autonomic responses to pain anticipation and pain stimulation. European Journal of Pain 10: 659–659. doi: 10.1016/j.ejpain.2005.10.009 16337150

9. Beatty J, Lucero-Wagoner B (2000) The pupillary system. Handbook of Psychophysiology 2: 142–162.

10. Wierda SM, van Rijn H, Taatgen NA, Martens S (2012) Pupil dilation deconvolution reveals the dynamics of attention at high temporal resolution. Proceedings of the National Academy of Sciences 109: 8456–8460.

11. Hoeks B, Levelt WJ (1993) Pupillary dilation as a measure of attention: A quantitative system analysis. Behavior Research Methods 25: 16–26.

12. Iriki A, Tanaka M, Iwamura Y (1996) Attention-induced neuronal activity in the monkey somatosensory cortex revealed by pupillometrics. Neuroscience Research 25: 173–181. doi: 10.1016/0168-0102(96)01043-7 8829154

13. Yang LL, Niemann CU, Larson MD (2003) Mechanism of pupillary reflex dilation in awake volunteers and in organ donors. Anesthesiology: The Journal of the American Society of Anesthesiologists 99: 1281–1286.

14. Chapman CR, Oka S, Bradshaw DH, Jacobson RC, Donaldson GW (1999) Phasic pupil dilation response to noxious stimulation in normal volunteers: relationship to brain evoked potentials and pain report. Psychophysiology 36: 44–52. doi: 10.1017/s0048577299970373 10098379

15. Oka S, Chapman CR, Jacobson RC (2000) Phasic pupil dilation response to noxious stimulation: Effects of conduction distance, sex, and age. Journal of Psychophysiology 14: 97.

16. Loewenfeld IE (1958) Mechanisms of reflex dilatation of the pupil. Documenta Ophthalmologica 12: 185–448. doi: 10.1007/bf00913471 13609524

17. Reeves AG, Posner JB (1969) The ciliospinal response in man. Neurology 19: 1145–1145. doi: 10.1212/wnl.19.12.1145 5389693

18. Fillingim RB, Maixner W. Gender differences in the responses to noxious stimuli; 1995. Elsevier. pp. 209–221.

19. Unruh AM (1996) Gender variations in clinical pain experience. Pain 65: 123–167. doi: 10.1016/0304-3959(95)00214-6 8826503

20. Ellermeier W, Westphal W (1995) Gender differences in pain ratings and pupil reactions to painful pressure stimuli. Pain 61: 435–439. doi: 10.1016/0304-3959(94)00203-q 7478686

21. Lawrenson J, Ruskell G (1993) Investigation of limbal touch sensitivity using a Cochet-Bonnet aesthesiometer. British Journal of Ophthalmology 77: 339–343. doi: 10.1136/bjo.77.6.339 8318479

22. Mollodot M, Owens H (1984) The influence of age on the fragility of the cornea. Acta Ophthalmologica 62: 819–824. doi: 10.1111/j.1755-3768.1984.tb05810.x 6507068

23. Acosta MC, Alfaro ML, Borrás F, Belmonte C, Gallar J (2006) Influence of age, gender and iris color on mechanical and chemical sensitivity of the cornea and conjunctiva. Experimental Eye Research 83: 932–938. doi: 10.1016/j.exer.2006.04.018 16784741

24. Millodot M (1972) Diurnal variation of corneal sensitivity. The British Journal of Ophthalmology 56: 844. doi: 10.1136/bjo.56.11.844 4647135

25. Riss B, Binder S, Riss P, Kemeter P (1982) Corneal sensitivity during the menstrual cycle. The British Journal of Ophthalmology 66: 123–126. doi: 10.1136/bjo.66.2.123 7059554

26. Millodot M, Lamont A (1974) Influence of menstruation on corneal sensitivity. The British Journal of Ophthalmology 58: 752. doi: 10.1136/bjo.58.8.752 4433487

27. Millodot M (1975) Do blue-eyed people have more sensitive corneas than brown-eyed people? Nature 255: 151–152. doi: 10.1038/255151a0 1168859

28. Marfurt C, Kingsley R, Echtenkamp S (1989) Sensory and sympathetic innervation of the mammalian cornea. A retrograde tracing study. Investigative Ophthalmology & Visual Science 30: 461–472.

29. Van der Werf F, Baljet B, Prins M, Ruskell G, Otto J (1996) Innervation of the palpebral conjunctiva and the superior tarsal muscle in the cynomolgous monkey: a retrograde fluorescent tracing study. Journal of Anatomy 189: 285. 8886950

30. Vega JA, Simpson TL, Fonn D (1999) A noncontact pneumatic esthesiometer for measurement of ocular sensitivity: a preliminary report. Cornea 18: 675–681. doi: 10.1097/00003226-199911000-00009 10571298

31. Feng Y, Simpson TL (2003) Nociceptive sensation and sensitivity evoked from human cornea and conjunctiva stimulated by CO2. Investigative Ophthalmology & Visual Science 44: 529–532.

32. Chen J, Feng Y, Simpson TL (2010) Human corneal adaptation to mechanical, cooling, and chemical stimuli. Investigative Ophthalmology & Visual Science 51: 876–881.

33. Rao SBS, Simpson TL (2014) Measurement of Difference Thresholds on the Ocular Surface Difference Thresholds on the Ocular Surface. Investigative Ophthalmology & Visual Science 55: 1095–1100.

34. Chen X, Gallar J, Pozo MA, Baeza M, Belmonte C (1995) CO2 stimulation of the cornea: a comparison between human sensation and nerve activity in polymodal nociceptive afferents of the cat. European Journal of Neuroscience 7: 1154–1163. doi: 10.1111/j.1460-9568.1995.tb01105.x 7582088

35. Belmonte C, Acosta MC, Schmelz M, Gallar J (1999) Measurement of corneal sensitivity to mechanical and chemical stimulation with a CO2 esthesiometer. Investigative Ophthalmology & Visual Science 40: 513–519.

36. Acosta MC, Tan ME, Belmonte C, Gallar J (2001) Sensations evoked by selective mechanical, chemical, and thermal stimulation of the conjunctiva and cornea. Investigative Ophthalmology & Visual Science 42: 2063–2067.

37. Belmonte C, Aracil A, Acosta MC, Luna C, Gallar J (2004) Nerves and sensations from the eye surface. The Ocular Surface 2: 248–253. doi: 10.1016/s1542-0124(12)70112-x 17216099

38. Situ P, Simpson TL (2010) Interaction of corneal nociceptive stimulation and lacrimal secretion. Investigative Ophthalmology & Visual Science 51: 5640–5645.

39. Alabi EB, Simpson TL (2019) Conjunctival Redness Response to Corneal Stimulation. Optometry and Vision Science 96: 507–512. doi: 10.1097/OPX.0000000000001398 31274739

40. Stern ME, Gao J, Siemasko KF, Beuerman RW, Pflugfelder SC (2004) The role of the lacrimal functional unit in the pathophysiology of dry eye. Experimental Eye Research 78: 409–416. doi: 10.1016/j.exer.2003.09.003 15106920

41. Situ P, Simpson T, Fonn D (2007) Eccentric variation of corneal sensitivity to pneumatic stimulation at different temperatures and with CO 2. Experimental Eye Research 85: 400–405. doi: 10.1016/j.exer.2007.06.006 17662716

42. Gescheider GA (1997) Psychophysical measurement of thresholds: differential sensitivity. Psychophysics: the fundamentals: 1–15.

43. Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods 39: 175–191. doi: 10.3758/bf03193146 17695343

44. Team RC (2013) R: A language and environment for statistical computing.

45. Pedersen EJ, Miller DL, Simpson GL, Ross N (2019) Hierarchical generalized additive models in ecology: an introduction with MGCV. PeerJ 7: e6876. doi: 10.7717/peerj.6876 31179172

46. Kardon R (1995) Pupillary light reflex. Current opinion in ophthalmology 6: 20–26. doi: 10.1097/00055735-199512000-00004 10160414

47. Larson MD, Sessler DI, Washington DE, Merrifield BR, Hynson JA, McGuire J. (1993) Pupillary response to noxious stimulation during isoflurane and propofol anesthesia. Anesthesia & Analgesia 76: 1072–1078.

48. Beatty J (1982) Phasic not tonic pupillary responses vary with auditory vigilance performance. Psychophysiology 19: 167–172. doi: 10.1111/j.1469-8986.1982.tb02540.x 7071295

49. Bingefors K, Isacson D (2004) Epidemiology, co‐morbidity, and impact on health‐related quality of life of self‐reported headache and musculoskeletal pain—a gender perspective. European Journal of Pain 8: 435–450. doi: 10.1016/j.ejpain.2004.01.005 15324775

50. Levine FM, De Simone LL (1991) The effects of experimenter gender on pain report in male and female subjects. Pain 44: 69–72. doi: 10.1016/0304-3959(91)90149-r 2038491

51. Velle W (1987) Sex differences in sensory functions. Perspectives in Biology and Medicine 30: 490–522. doi: 10.1353/pbm.1987.0015 3452194

52. Craft RM, Mogil JS, Aloisi AM (2004) Sex differences in pain and analgesia: the role of gonadal hormones. European Journal of Pain 8: 397–411. doi: 10.1016/j.ejpain.2004.01.003 15324772

53. Lautenbacher S, Strian F (1991) Sex differences in pain and thermal sensitivity: the role of body size. Attention, Perception, & Psychophysics 50: 179–183.

54. Feine JS, Bushnell MC, Miron D, Duncan GH (1991) Sex differences in the perception of noxious heat stimuli. Pain 44: 255–262. doi: 10.1016/0304-3959(91)90094-e 2052394

55. Otto MW, Dougher MJ (1985) Sex differences and personality factors in responsivity to pain. Perceptual and Motor Skills 61: 383–390. doi: 10.2466/pms.1985.61.2.383 4069906

56. Berardelli A, Rothwell J, Day B, Marsden C (1985) Pathophysiology of blepharospasm and oromandibular dystonia. Brain 108: 593–608. doi: 10.1093/brain/108.3.593 4041776

57. Jansen AS, Van Nguyen X, Karpitskiy V, Mettenleiter TC, Loewy AD (1995) Central command neurons of the sympathetic nervous system: basis of the fight-or-flight response. Science 270: 644–646. doi: 10.1126/science.270.5236.644 7570024

58. Treister R, Kliger M, Zuckerman G, Aryeh IG, Eisenberg E (2012) Differentiating between heat pain intensities: the combined effect of multiple autonomic parameters. Pain 153: 1807–1814. doi: 10.1016/j.pain.2012.04.008 22647429

59. Hofle M, Hauck M, Engel AK, Senkowski D (2012) Viewing a needle pricking a hand that you perceive as yours enhances unpleasantness of pain. Pain 153:1074–1081. doi: 10.1016/j.pain.2012.02.010 22520059

60. Hofle M, Kenntner-Mabiala R, Pauli P, Alpers GW (2008) You can see pain in the eye: pupillometry as an index of pain intensity under different luminance conditions. International Journal of Psychophysiology 70:171–175. doi: 10.1016/j.ijpsycho.2008.06.008 18644409

61. Eisenach JC, Curry R, Aschenbrenner CA, Coghill RC, Houle TT(2017) Pupil responses and pain ratings to heat stimuli: Reliability and effects of expectations and a conditioning pain stimulus. Jouranl of Neuroscience Methods 1:279:52–59.

62. Oka S, Chapman CR, Kim B, Nakajima I, Shimizu O, Oi Y (2007) Pupil dilation response to noxious stimulation: effect of varying nitrous oxide concentration. Clinical Neurophysiology 118:2016–2024. doi: 10.1016/j.clinph.2007.04.023 17646133


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#