Upregulation of long non-coding RNA ROR1-AS1 promotes cell growth and migration in bladder cancer by regulation of miR-504


Autoři: Qingke Chen aff001;  Lingmin Fu aff002
Působiště autorů: Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China aff001;  Jiangxi Health Vocational College, Nanchang, China aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227568

Souhrn

Background

Increasing evidence has suggested that multiple long non-coding RNAs (lncRNAs) act key regulatory functions in the pathogenesis of bladder cancer. This study aimed to determine the expression and clinical significance of lncRNA ROR1 antisense RNA 1 (ROR1-AS1) from patients with bladder cancer, and to explore the potential role and mechanism underlying ROR1-AS1-related cancer progression.

Methods

Real time quantitative PCR (RT-qPCR) was conducted to detected the expression levels of ROR1-AS1 and miR-504 in bladder cancer samples and cell lines. Chi-square test was used for correlation analysis. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and wound scratch assays were applied to assesses the effects of ROR1-AS1 overexpression and knockdown on bladder cancer cell growth and migration in vitro, respectively. The prognosis of bladder cancer patients was evaluated by survival curves with Kaplan-Meier method. The regulatory mechanism of ROR1-AS1 on miR-504 was confirmed by bioinformatics analysis and luciferase reporter gene assay.

Results

ROR1-AS1 levels were obviously upregulated in bladder cancer tissues than matched normal bladder tissues. High expression of ROR1-AS1 was remarkably correlated with higher histological grade, advanced tumor stage, and positive lymph node metastasis. High ROR1-AS1 expression was markedly correlated with shorter overall survival of bladder cancer patients. Moreover, knockdown of ROR1-AS1 notably repressed T24 and 5637 cell growth and migration. ROR1-AS1 directly bound with miR-504 and act as a molecular sponge to decrease miR-504 expression. Silencing of miR-504 partly abrogated ROR1-AS1 knockdown-induced inhibitory effects on bladder cancer cell growth and migration.

Conclusions

Our data demonstrated that increased ROR1-AS1 promotes cell growth and migration of bladder cancer via regulation of miR-504, indicating ROR1-AS1 may be used as a prognostic biomarker and therapeutic target for bladder cancer.

Klíčová slova:

Bladder – Bladder cancer – Cancer cell migration – Cell growth – Cell proliferation – Long non-coding RNAs – MTT assay – Transfection


Zdroje

1. Dobruch J, Daneshmand S, Fisch M, Lotan Y, Noon AP, Resnick MJ, et al. (2016) Gender and Bladder Cancer: A Collaborative Review of Etiology, Biology, and Outcomes. Eur Urol. 69(2): 300–310. doi: 10.1016/j.eururo.2015.08.037 26346676

2. Siegel RL, Miller KD, Jemal A. (2017) Cancer Statistics, 2017. CA Cancer J Clin. 67(1): 7–30. doi: 10.3322/caac.21387 28055103

3. Maraver A, Fernandez-Marcos PJ, Cash TP, Mendez-Pertuz M, Duenas M, Maietta P, et al. (2015) NOTCH pathway inactivation promotes bladder cancer progression. J Clin Invest. 125(2): 824–830. doi: 10.1172/JCI78185 25574842

4. Alifrangis C, McGovern U, Freeman A, Powles T, Linch M. (2019) Molecular and histopathology directed therapy for advanced bladder cancer. Nat Rev Urol. 16(8): 465–483. doi: 10.1038/s41585-019-0208-0 31289379

5. Kim WJ, Bae SC. (2008) Molecular biomarkers in urothelial bladder cancer. Cancer Sci. 99(4): 646–652. doi: 10.1111/j.1349-7006.2008.00735.x 18377416

6. Chakraborty A, Dasari S, Long W, Mohan C. (2019) Urine protein biomarkers for the detection, surveillance, and treatment response prediction of bladder cancer. Am J Cancer Res. 9(6): 1104–1117. 31285945

7. Mercer TR, Dinger ME, Mattick JS. (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet. 10(3): 155–159. doi: 10.1038/nrg2521 19188922

8. Moran VA, Perera RJ, Khalil AM. (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res. 40(14): 6391–6400. doi: 10.1093/nar/gks296 22492512

9. Du Z, Fei T, Verhaak RG, Su Z, Zhang Y, Brown M, et al. (2013) Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer. Nat Struct Mol Biol. 20(7): 908–913. doi: 10.1038/nsmb.2591 23728290

10. Yang Z, Li X, Yang Y, He Z, Qu X, Zhang Y. (2016) Long noncoding RNAs in the progression, metastasis, and prognosis of osteosarcoma. Cell Death Dis. 7(9): e2389. doi: 10.1038/cddis.2016.272 27685633

11. Bhan A, Soleimani M, Mandal SS. (2017) Long Noncoding RNA and Cancer: A New Paradigm. Cancer Res. 77(15): 3965–3981. doi: 10.1158/0008-5472.CAN-16-2634 28701486

12. Chi Y, Wang D, Wang J, Yu W, Yang J. (2019) Long Non-Coding RNA in the Pathogenesis of Cancers. Cells. 8(9): 1015.

13. Zeng XY, Jiang XY, Yong JH, Xie H, Yuan J, Zeng D, et al. (2019) lncRNA ABHD11-AS1, regulated by the EGFR pathway, contributes to the ovarian cancer tumorigenesis by epigenetically suppressing TIMP2. Cancer Med. 8(16): 7074–7085. doi: 10.1002/cam4.2586 31568657

14. Song Z, Zhang X, Lin Y, Wei Y, Liang S, Dong C. (2019) LINC01133 inhibits breast cancer invasion and metastasis by negatively regulating SOX4 expression through EZH2. J Cell Mol Med. 23(11): 7554–7565. doi: 10.1111/jcmm.14625 31557401

15. Zheng YJ, Zhao JY, Liang TS, Wang P, Wang J, Yang DK, et al. (2019) Long noncoding RNA SMAD5-AS1 acts as a microRNA-106a-5p sponge to promote epithelial mesenchymal transition in nasopharyngeal carcinoma. FASEB J. 33(11): 12915–12928. doi: 10.1096/fj.201900803R 31557058

16. Fang C, Xu L, He W, Dai J, Sun F. (2019) Long noncoding RNA DLX6-AS1 promotes cell growth and invasiveness in bladder cancer via modulating the miR-223-HSP90B1 axis. Cell Cycle. 18(23): 3288–3299. doi: 10.1080/15384101.2019.1673633 31615303

17. Hu G, Gupta SK, Troska TP, Nair A, Gupta M. (2017) Long non-coding RNA profile in mantle cell lymphoma identifies a functional lncRNA ROR1-AS1 associated with EZH2/PRC2 complex. Oncotarget. 8(46): 80223–80234. doi: 10.18632/oncotarget.17956 29113297

18. Liao T, Maierdan SL, Lv C. (2019) ROR1-AS1 promotes tumorigenesis of colorectal cancer via targeting Wnt/beta-catenin. Eur Rev Med Pharmacol Sci. 23(3 Suppl): 217–223. doi: 10.26355/eurrev_201908_18650 31389604

19. Wang FZ, Zhang MQ, Zhang L, Zhang MC. (2019) Long non-coding RNA ROR1-AS1 enhances colorectal cancer metastasis by targeting miR-375. Eur Rev Med Pharmacol Sci. 23(16): 6899–6905. doi: 10.26355/eurrev_201908_18729 31486489

20. Pellucchi F, Freschi M, Ibrahim B, Rocchini L, Maccagnano C, Briganti A, et al. (2011) Clinical reliability of the 2004 WHO histological classification system compared with the 1973 WHO system for Ta primary bladder tumors. J Urol. 186(6): 2194–2199. doi: 10.1016/j.juro.2011.07.070 22019037

21. Oosterlinck W, Lobel B, Jakse G, Malmstrom PU, Stockle M, Sternberg C. (2002) Guidelines on bladder cancer. Eur Urol. 41(2): 105–112. doi: 10.1016/s0302-2838(01)00026-4 12074395

22. Schmittgen TD, Livak KJ. (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 3(6): 1101–1108. doi: 10.1038/nprot.2008.73 18546601

23. Gulia C, Baldassarra S, Signore F, Rigon G, Pizzuti V, Gaffi M, et al. (2017) Role of Non-Coding RNAs in the Etiology of Bladder Cancer. Genes (Basel). 8(11): 339.

24. Taheri M, Omrani MD, Ghafouri-Fard S. (2018) Long non-coding RNA expression in bladder cancer. Biophys Rev. 10(4): 1205–1213. doi: 10.1007/s12551-017-0379-y 29222807

25. Li Y, Shi B, Dong F, Zhu X, Liu B, Liu Y. (2019) Long Non-coding RNA DLEU1 Promotes Cell Proliferation, Invasion, and Confers Cisplatin Resistance in Bladder Cancer by Regulating the miR-99b/HS3ST3B1 Axis. Front Genet. 10: 280. doi: 10.3389/fgene.2019.00280 30984249

26. Miao L, Liu HY, Zhou C, He X. (2019) LINC00612 enhances the proliferation and invasion ability of bladder cancer cells as ceRNA by sponging miR-590 to elevate expression of PHF14. J Exp Clin Cancer Res. 38(1): 143. doi: 10.1186/s13046-019-1149-4 30940184

27. Gao R, Zhang N, Yang J, Zhu Y, Zhang Z, Wang J, et al. (2019) Long non-coding RNA ZEB1-AS1 regulates miR-200b/FSCN1 signaling and enhances migration and invasion induced by TGF-beta1 in bladder cancer cells. J Exp Clin Cancer Res. 38(1): 111. doi: 10.1186/s13046-019-1102-6 30823924

28. Dinescu S, Ignat S, Lazar AD, Constantin C, Neagu M, Costache M. (2019) Epitranscriptomic Signatures in lncRNAs and Their Possible Roles in Cancer. Genes (Basel). 10(1): 52.

29. Wang W, Zheng W, Zhang L, Li K. (2019) Long non-coding RNA ROR1-AS1 incudes tumorigenesis of colorectal cancer by affecting Wnt/beta-catenin signaling pathway. Biosci Rep. 39(11): BSR20191453. doi: 10.1042/BSR20191453 31693094

30. Abdollahzadeh R, Daraei A, Mansoori Y, Sepahvand M, Amoli MM, Tavakkoly-Bazzaz J. (2019) Competing endogenous RNA (ceRNA) cross talk and language in ceRNA regulatory networks: A new look at hallmarks of breast cancer. J Cell Physiol. 234(7): 10080–10100. doi: 10.1002/jcp.27941 30537129

31. Quan H, Li B, Yang J. (2018) MicroRNA-504 functions as a tumor suppressor in hepatocellular carcinoma through inhibiting Frizzled-7-mediated-Wnt/beta-catenin signaling. Biomed Pharmacother. 107: 754–762. doi: 10.1016/j.biopha.2018.07.150 30142536

32. Kikkawa N, Kinoshita T, Nohata N, Hanazawa T, Yamamoto N, Fukumoto I, et al. (2014) microRNA-504 inhibits cancer cell proliferation via targeting CDK6 in hypopharyngeal squamous cell carcinoma. Int J Oncol. 44(6): 2085–2092. doi: 10.3892/ijo.2014.2349 24647829

33. Ye MF, Zhang JG, Guo TX, Pan XJ. (2018) MiR-504 inhibits cell proliferation and invasion by targeting LOXL2 in non small cell lung cancer. Biomed Pharmacother. 97: 1289–1295. doi: 10.1016/j.biopha.2017.11.005 29156517

34. Liu Q, Guan Y, Li Z, Wang Y, Liu Y, Cui R. (2019) miR-504 suppresses mesenchymal phenotype of glioblastoma by directly targeting the FZD7-mediated Wnt-beta-catenin pathway. J Exp Clin Cancer Res. 38(1): 358. doi: 10.1186/s13046-019-1370-1 31419987


Článek vyšel v časopise

PLOS One


2020 Číslo 1