Morphological diversity within a core collection of subterranean clover (Trifolium subterraneum L.): Lessons in pasture adaptation from the wild

Autoři: Abdi I. Abdi aff001;  Phillip G. H. Nichols aff001;  Parwinder Kaur aff001;  Bradley J. Wintle aff001;  William Erskine aff001
Působiště autorů: Centre for Plant Genetics and Breeding, School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, Australia aff001;  Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, Australia aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0223699


Subterranean clover (Trifolium subterraneum L.) is a diploid self-pollinated annual pasture legume native to the Mediterranean region and widely sown in southern Australia and other countries with Mediterranean-type climates. This study utilised a core collection of 97 lines, representing around 80% of the genetic diversity of the species, to examine morphological diversity within subterranean clover. A total of 23 quantitative agro-morphological and 13 semi-quantitative morphological marker traits were assayed on the core collection and 28 diverse Australian cultivars as spaced plants in a replicated common garden experiment. Relationships between these traits and 24 climatic and edaphic parameters at their sites of origin were also examined within the core collection. Significant diversity was present for all traits. The Australian cultivars had similar levels of diversity to the core collection for several traits. Among the agro-morphological traits, time to flowering, leaf size and petiole diameter in mid-winter, plant area in late winter, maximum stem length, content of the oestogenic isoflavone biochanin A and total isoflavone content, were correlated with seven or more environmental variables. These can be considered highly adaptive, being the result of strong environmental selection pressure over time. For the first time in a clover species, morphological markers, including leaf mark, anthocyanin pigmentation and pubescence traits, have been associated with rainfall and soil parameters. This suggests they either have an adaptive role or the genes controlling them may be linked to other genes controlling adaptive traits. This study demonstrated the value of core collections to examine diversity within much larger global collections. It also identified adaptive traits from wild plants that can be utilised to develop more productive and persistent subterranean clover cultivars. The high heritability of these traits indicates that selection gains can be readily made.

Klíčová slova:

Calyx – Flowering plants – Latitude – Leaves – Seeds – Soil pH – Summer – Internodes


1. Morley FHW, Katznelson J. Colonization in Australia by Trifolium subterraneum L. In: Baker H, editor. The genetics of colonizing species, New York: Academic Press; 1965, pp 269–282.

2. Katznelson J. Biological flora of Israel. 5. The subterranean clovers of Trifolium subsect. Calycomorphum Katzn. Trifolium subterraneum L. (sensu lato). Isr. J. Bot. 1974; 23: 69–108.

3. Zohary M, Heller D. The genus Trifolium. Jerusalem: Israel Academy of Sciences and Humanities; 1984.

4. Ghamkhar K, Nichols PGH, Erskine W, Snowball R, Murillo M, Appels R, et al. Hotspots and gaps in the world collection of subterranean clover (Trifolium subterraneum L.). J. Agric. Sci. 2014; 153: 1069–1083.

5. McGuire WS. Subterranean clover. In: Taylor NL, editor. Clover Science and Technology, Agronomy Monograph No. 25. Madison, USA: American Society of Agronomy, Crop Science Society of America and Soil Science Society of America; 1985, pp. 515–534.

6. Smetham ML. A review of subterranean clover (Trifolium subterraneum L.): its ecology, and use as a pasture legume in Australasia. Adv. Agron. 2003; 79: 303–350.

7. Nichols PGH, Foster KJ, Piano E, Pecetti L, Kaur P, Ghamkhar K et al. Genetic improvement of subterranean clover (Trifolium subterraneum L.). 1. Germplasm, traits and future prospects. Crop Past. Sci. 2013; 64: 312–346.

8. Nichols PGH, Jones RAC, Ridsdill-Smith TJ, Barbetti MJ. Genetic improvement of subterranean clover (Trifolium subterraneum L.). 2. Breeding for disease and pest resistance. Crop Past. Sci. 2014; 65: 1207–1229.

9. PBR database. Plant Breeders Rights database. IP Australia, Commonwealth Government of Australia. 2019; Available at:

10. Katznelson J, Morley FHW. A taxonomic revision of sect. Calycomorphum of the genus Trifolium. I. The geocarpic species. Isr. J. Bot. 1965; 14: 112–134.

11. Collins WJ, Rossiter RC, Haynes Y, Brown AHD, Marshall DR. Identification of subterranean clover cultivars and their genetic relationships by isozyme analysis. Aust. J. Agric. Res. 1984; 35: 399–411.

12. Falistocco E, Piccrilli M, Falcinelli M. Cytotaxonomy of Trifolium subterraneum L. Caryologia 1987; 40: 123–130.

13. Piluzza G, Pecetti L, Bullitta S, Piano E. Discrimination among subterranean clover (Trifolium subterraneum L. complex) genotypes using RAPD markers. Genet. Res. Crop Evol. 2005; 52: 193–199.

14. Piano E, Sardara M, Pusceddu S. Observations on the distribution and ecology of subterranean clover and other annual legumes in Sardinia. Riv. Agronomia 1982; 16: 273–283.

15. Gladstones JS. Naturalized subterranean clover strains in Western Australia: a preliminary agronomic examination. Aust. J. Agric. Res. 1967; 18: 713–731.

16. Nichols PGH, Cocks PS, Francis CM. Evolution over 16 years in a bulk-hybrid population of subterranean clover (Trifolium subterraneum L.) at two contrasting sites in south-western Australia. Euphytica 2009; 169: 31–48.

17. Piano E. Preliminary observations on the structure and variability of Sardinian populations of subterranean clover. Genet. Agraria 1984; 38: 75–90.

18. Piano E, Spanu F, Pecetti L. Observations on the structure and variability of populations of subterranean clover from Sicily, Italy. Euphytica 1993; 68: 43–51.

19. Piano E, Pecetti L, Carroni AM. Climatic adaptation in subterranean clover populations. Euphytica 1996; 92: 39–44.

20. Pecetti L, Piano E. Variation of morphological and adaptive traits in subterranean clover populations from Sardinia (Italy). Genet. Res. Crop Evol. 2002; 49: 189–197.

21. Pecetti L, Piano E. Leaf size variation in subterranean clover (Trifolium subterraneum L. sensu lato). Gen. Res. Crop. Evol. 1998; 45: 161–165.

22. Black JN. The significance of petiole length, leaf area, and light interception in competition between strains of subterranean clover (Trifolium subterraneum L.) grown in swards. Aust. J. Agric. Res. 1960; 11: 277–291.

23. Black JN. The interrelationship of solar radiation and leaf area index in determining the rate of dry matter production of swards of subterranean clover (Trifolium subterraneum L.). Aust. J. Agric. Res. 1963; 14: 20–38.

24. Rossiter RC. The relative success of strains of Trifolium subterraneum L. in binary mixtures under field conditions. Aust. J. Agric. Res. 1974; 25: 757–766.

25. Francis CM, Millington AJ. Varietal variation in the isoflavone content of subterranean clover: its estimation by a microtechnique. Aust. J. Agric. Res. 1965; 16: 557–564.

26. Cox RI, Braden AW. The metabolism and physiological effects of phyto-oestrogens in livestock. In: Proceedings of the Australian Society of Animal Production 1974; 10: 122–129.

27. Collins WJ, Cox RI. Oestrogenic activity in forage legumes. In: Barnes RF, Ball PR, Brougham RW, Marten GC Minson DJ, editors. Forage legumes for energy-efficient animal production, Proceedings of a trilateral workshop, Palmerston North, New Zealand: Springfield, Virginia: USDA-ARS; 1984. pp. 268–276.

28. Nichols PGH, Collins WJ, Barbetti MJ. Registered cultivars of subterranean clover—their characteristics, origin and identification, Bulletin No. 4327. South Perth, Western Australia: Agriculture Western Australia; 1996. Available at:

29. Brown AHD, Spillane C. Implementing core collections—principles, procedures, progress, problems and promise. In: Johnson RC Hodgkin T, editors. Core collections for today and tomorrow. Rome: International Plant Genetic Resources Institute; 1999. pp. 1–9.

30. Kaur P, Appels R, Bayer PE, Keeble-Gagnere G, Wang J, Hideki H, et al. Climate clever clovers: New paradigm to reduce the environmental footprint of ruminants by breeding low methanogenic forages utilising haplotype variation. Front. Plant. Sci.

31. Ghamkhar K, Isobe S, Nichols PGH, Faithfull T, Ryan MH, Snowball R, et al. The first genetic maps for subterranean clover (Trifolium subterraneum L.) and comparative genomics with T. pratense L. and Medicago truncatula Gaertn. to identify new molecular markers for breeding. Mol. Breed. 2012; 30: 213–226.

32. Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL. MSTRAT: An algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J. Hered. 2001; 92: 93–94. doi: 10.1093/jhered/92.1.93 11336240

33. Nichols PGH, Barbetti MJ, Sandral GA, Dear BS, de Koning CT, Lloyd DL et al. Coolamon subterranean clover (Trifolium subterraneum L. var. subterraneum (Katz. et Morley) Zohary and Heller). Aust. J. Exp. Agric. 2007; 47: 223–225.

34. Nichols PGH, Barbetti MJ, Sandral GA, Dear BS, de Koning CT, Lloyd DL et al. Urana subterranean clover (Trifolium subterraneum L. var. subterraneum). Aust. J. Exp. Agric. 2006; 46: 1105–1107.

35. Williams RF, Evans LT, Ludwig LJ. Estimation of leaf area for clover and lucerne. Aust. J. Agric. Res. 1964; 15: 231–233.

36. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005; 25: 1965–1978.

37. WorldClim. WorldClim–Global Climate Data Ver. 1·4. 2006; Available from:

38. Falconer DS, Mackay TF, Frankham R. Introduction to quantitative genetics: trends in genetics. Harlow: Longman Frankel; 1996.

39. Cocks PS. Evolution in sown populations of subterranean clover (Trifolium subterraneum L.) in South Australia. Crop Pasture Sci. 1992; 43: 1583–1595.

40. Ryan MH, Kidd D, Sandral GA, Yang Z, Lambers H, Culvenor RA et al. High variation in the percentage of root length colonised by arbuscular mycorrhizal fungi among 139 lines representing the species subterranean clover (Trifolium subterraneum). App. Soil Ecol. 2016; 98: 221–232.

41. Nichols PGH, Kaur P, Peck D, Wintle BJ, D’Antuono M, Erskine W. Diversity for redlegged earth mite cotyledon resistance within subterranean clover and annual medics. In: Proceeding of the 19th Australian Agronomy Conference, 25–29 August, 2019, Wagga Wagga, NSW: Australian Agronomy Society; 2019 (in press).

42. Baresel JP, Nichols P, Charrois A, Schmidhalter U. Adaptation of ecotypes and commercial varieties of subterranean clover (Trifolium subterraneum L.) to German environmental conditions and its suitability as living mulch. Genet. Res. Crop. Evol. 2018; 65: 2057–2068.

43. Tan BH, Collins WJ. Multi-allelic nature of the locus controlling leaf marking in subterranean clover. Aust. J. Agric. Res. 1987; 38: 547–558.

44. Nichols PGH, Snowball R, D’Antuono MF, Barbetti MJ. Resistance to clover scorch disease (Kabatiella caulivora) among accessions of purple clover (Trifolium purpureum) and its relationship to the eco-geography of collection sites. Crop Past. Sci. 2010; 61: 44–49.

45. Erskine W, Adham Y, Holly L. Geographic distribution of variation in quantitative traits in a world lentil collection. Euphytica 1989; 43: 97–103.

46. Ehrman T, Cocks PS. Reproductive patterns in annual legume species on an aridity gradient. Vegetation 1996; 122: 47–59.

47. Bennett SJ. Genetic variation between and within two populations of Trifolium glomeratum (cluster clover) in Western Australia. Aust. J. Agric. Res. 1997; 48: 969–976.

48. Quadrana L, Colot V. Plant transgenerational epigenetics. Ann. Rev. Genet. 2016; 50: 467–491. doi: 10.1146/annurev-genet-120215-035254 27732791

49. Khazaei H, Street K, Bari A, Mackay M, Stoddard FL. The FIGS (Focused Identification of Germplasm Strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLOS One 2013. doi: 10.1371/journal.pone.0063107

50. Mackay M. One core collection or many? In: Hodgkin T, Brown AHD, Van Hintum TJL, Morales EAV, editors. Core collections of plant genetic resources. Chichester: John Wiley & Sons Ltd.; 1995, pp. 199–210.

51. Kaur N, Street K, Mackay M, Yahiaoui N, Keller B. Molecular approaches for characterization and use of natural disease resistance in wheat. Europ. J. Plant Path. 2008; 121: 387–397.

52. El Bouhssini M, Street K, Amri A, Mackay M, Ogbonnaya FC, et al. Sources of resistance in bread wheat to Russian wheat aphid (Diuraphis noxia) in Syria identified using the Focused Identification of Germplasm Strategy (FIGS). Plant Breed. 2011; 130: 96–97.

Článek vyšel v časopise


2020 Číslo 1