Detection of amitraz resistance and reduced treatment efficacy in the Varroa Mite, Varroa destructor, within commercial beekeeping operations

Autoři: Frank D. Rinkevich aff001
Působiště autorů: USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, Louisiana, United States of America aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227264


The parasitic mite Varroa destructor and the associated viruses it transmits are responsible for most instances of honey bee colony losses in the United States. As such, beekeepers utilize miticides to control Varroa populations. Widespread resistance has developed to the miticides fluvalinate and coumaphos. However, Varroa has largely maintained susceptibility to amitraz despite a long and extensive use history. Anecdotal reports of reduced amitraz effectiveness have been a widely discussed contemporary issue among commercial beekeepers. Amitraz resistance was measured by in vitro bioassays with technical amitraz as well as Apivar® efficacy tests. Amitraz resistance was evaluated in commercial beekeeping operations in Louisiana, New York, and South Dakota with a long history of amitraz use. This research shows that amitraz remains an effective Varroa control product in many operations. However, apiaries across operations displayed a wide range of amitraz resistance from no resistance to high resistance that resulted in Varroa control failure. The resistance ratios from in vitro amitraz bioassays were correlated with reduced Apivar® efficacy, demonstrating bona fide cases of Varroa control failures due to amitraz resistance. Therefore, amitraz resistance monitoring protocols need to be developed. A resistance monitoring network should be established to ensure the sustainability of miticide use for Varroa control.

Klíčová slova:

Acetones – Animal sociality – Bees – Honey bees – Mites – Pest control – Pesticides – Viral transmission and infection


1. Whalon M, Mota-Sanchez D, Hollingsworth R. Global pesticide resistance in arthropods. Cambridge, MA: CABI; 2008. 166 p.

2. Van Leeuwen T, Dermauw W. The molecular evolution of xenobiotic metabolism and resistance in chelicerate mites. Annual Review of Entomology. 2016;61:475–98. doi: 10.1146/annurev-ento-010715-023907 26982444

3. Scott JG, Roush RT, Rutz DA. Insecticide resistance of house flies from New York dairies (Diptera: Muscidae). J Agric Entomol. 1989;6:53–64.

4. Shono T, Zhang L, Scott JG. Indoxacarb resistance in the house fly, Musca domestica. Pestic Biochem Physiol. 2004;80:106–12.

5. Hamm R, Shono T, Scott JG. A cline in frequency of autosomal males is not associated with insecticide resistance in house fly (Diptera: Muscidae). J Econ Entomol. 2005;98:171–6. doi: 10.1093/jee/98.1.171 15765679

6. González-Cabrera J, Bumann H, Rodríguez-Vargas S, Kennedy PJ, Krieger K, Altreuther G, et al. A single mutation is driving resistance to pyrethroids in European populations of the parasitic mite, Varroa destructor. Journal of pest science. 2018;91(3):1137–44.

7. Martin SJ. Acaricide (pyrethroid) resistance in Varroa destructor. Bee World. 2004;85(4):67–9.

8. Rinkevich FD, Hedtke SM, Leichter CA, Harris SA, Su C, Brady SG, et al. Multiple origins of kdr-type resistance in the house fly, Musca domestica. PLoS One. 2012;7(12):e52761. doi: 10.1371/journal.pone.0052761 23285178

9. Rinkevich FD, Su C, Lazo T, Hawthorne D, Tingey W, Naimov S, et al. Multiple evolutionary origins of knockdown resistance (kdr) in pyrethroid-resistant Colorado potato beetle, Leptinotarsa decemlineata. Pestic Biochem Physiol. 2012;104(3):192–200.

10. González-Cabrera J, Rodríguez-Vargas S, Davies TE, Field LM, Schmehl D, Ellis JD, et al. Novel mutations in the voltage-gated sodium channel of pyrethroid-resistant Varroa destructor populations from the southeastern USA. PloS One. 2016;11(5):e0155332. doi: 10.1371/journal.pone.0155332 27191597

11. Zhao JZ, Li YX, Collins HL, Gusukuma-Minuto L, Mau RF, Thompson GD, et al. Monitoring and characterization of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad. J Econ Entomol. 2002;95(2):430–6. doi: 10.1603/0022-0493-95.2.430 12020024.

12. Hardstone MC, Leichter CA, Harrington LC, Kasai S, Tomita T, Scott JG. Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito, Culex pipiens quinquefasciatus. Pestic Biochem Physiol. 2007;89:175–84.

13. Colin M, Vandame R, Jourdam P, Di Pasquale S. Fluvalinate resistance of Varroa jacobsoni Oudemans (Acari: Varroidae) in Mediterranean apiaries of France. Apidologie. 1997;28(6):375–84.

14. Scott JG. Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol. 1999;29:757–77. doi: 10.1016/s0965-1748(99)00038-7 10510498

15. Field LM, Blackman RL, Devoshire AL. Evolution of Amplified Esterase Genes as a Mode of Insecticide Resistance in Aphids. In: Ishaaya I, editor. Biochemical Sites of Insecticide Action and Resistance. Heidelberg: Springer-Verlag Berlin; 2001. p. 209–19.

16. Newcomb RD, Campbell PM, Ollis DL, Cheah E, Russell RJ, Oakeshott JG. A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly. Proceedings of the National Academy of Sciences. 1997;94:7464–8.

17. Hillesheim E, Ritter W, Bassand D. First data on resistance mechanisms of Varroa jacobsoni (Oud.) against tau-fluvalinate. Experimental & Applied Acarology. 1996;20(5):283–96.

18. Rinkevich FD, Du Y, Dong K. Diversity and convergence of sodium channel mutations involved in resistance to pyrethroids Pestic Biochem Physiol. 2013;106:93–100. doi: 10.1016/j.pestbp.2013.02.007 24019556

19. Fournier D. Mutations of acetylcholinesterase which confer insecticide resistance in insect populations. Chemico-Biol Inteact. 2005;157:257–61.

20. Gonzalez-Cabrera J, Davies TGE, Field LM, Kennedy PJ, Williamson MS. An amino acid substitution (L925V) associated with resistance to pyrethroids in Varroa destructor. PLoS One. 2013;8(12):e82941. doi: 10.1371/journal.pone.0082941 24367572

21. Balabanidou V, Grigoraki L, Vontas J. Insect cuticle: a critical determinant of insecticide resistance. Current opinion in insect science. 2018;27:68–74. doi: 10.1016/j.cois.2018.03.001 30025637

22. Morawetz L, Köglberger H, Griesbacher A, Derakhshifar I, Crailsheim K, Brodschneider R, et al. Health status of honey bee colonies (Apis mellifera) and disease-related risk factors for colony losses in Austria. PloS one. 2019;14(7):e0219293. doi: 10.1371/journal.pone.0219293 31287830

23. Guzman-Novoa E, Eccles L, Calvete Y, McGowan J, Kelly PG, Correa-Benitez A. Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie. 2010;71(443–450).

24. Le Conte Y, Ellis M, Ritter W. Varroa mites and honey bee health: can Varroa explain part of the colony losses? Apidologie. 2010;41(3):353–63.

25. Thoms CA, Nelson KC, Kubas A, Steinhauer N, Wilson ME. Beekeeper stewardship, colony loss, and Varroa destructor management. Ambio. 2018:1–10.

26. Rosenkranz P, Aumeier P, Ziegelmann B. Biology and control of Varroa destructor. Journal of invertebrate pathology. 2010;103:S96–S119. doi: 10.1016/j.jip.2009.07.016 19909970

27. Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, et al. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proceedings of the National Academy of Sciences. 2019;116(5):1792–801.

28. Martin SJ, Highfield AC, Brettell L, Villalobos EM, Budge GE, Powell M, et al. Global honey bee viral landscape altered by a parasitic mite. Science. 2012;336(6086):1304–6. doi: 10.1126/science.1220941 22679096

29. Milani N. The resistance of Varroa jacobsoni Oud. to acaricides. Apidologie. 1999;30(2–3):229–34.

30. Soderlund DM. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Arch Toxicol. 2012;86:165–81. doi: 10.1007/s00204-011-0726-x 21710279

31. Oakeshott J, Devonshire A, Claudianos C, Sutherland T, Horne I, Campbell P, et al. Comparing the organophosphorus and carbamate insecticide resistance mutations in cholin- and carboxyl-esterases. Chemico-Biological Interactions. 2005;157:269–75. doi: 10.1016/j.cbi.2005.10.041 16289012

32. Pettis J, Shimanuki H, Feldlaufer M. An assay to detect fluvalinate resistance in Varroa mites. American bee journal (USA). 1998.

33. Pettis JS. A scientific note on Varroa destructor resistance to coumaphos in the United States. Apidologie. 2004;35(1):91–2.

34. Mullin CA, Frazier M, Frazier JL, Ashcraft S, Simonds R, vanEngelsdorp D, et al. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PLoS ONE. 2010;5:e9754. doi: 10.1371/journal.pone.0009754 20333298

35. Traynor KS, Pettis JS, Tarpy DR, Mullin CA, Frazier JL, Frazier M. In-hive Pesticide Exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Scientific reports. 2016;6:33207. doi: 10.1038/srep33207 27628343

36. Hollingworth RM, Lund AE. Biological and Neurotoxic Effects of Amidine Pesticides. In: Coats JR, editor. Insecticide Mode of Action. New York: Academic Press; 1982. p. 189–227.

37. Elzen PJ, Baxter JR, Spivak M, Wilson WT. Control of Varroa jacobsoni Oud. resistant to fluvalinate and amitraz using coumaphos. Apidologie. 2000;31(3):437–41.

38. Maggi MD, Ruffinengo SR, Negri P, Eguaras MJ. Resistance phenomena to amitraz from populations of the ectoparasitic mite Varroa destructor of Argentina. Parasitology research. 2010;107(5):1189–92. doi: 10.1007/s00436-010-1986-8 20668878

39. Kamler M, Nesvorna M, Stara J, Erban T, Hubert J. Comparison of tau-fluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of Varroa destructor in a vial test. Experimental and applied acarology. 2016;69(1):1–9. doi: 10.1007/s10493-016-0023-8 26910521

40. Dietemann V, Nazzi F, Martin SJ, Anderson DL, Locke B, Delaplane KS, et al. Standard methods for varroa research. Journal of apicultural research. 2013;52(1):1–54.

41. Johnson RM, Huang ZY, Berenbaum MR. Role of detoxification in Varroa destructor (Acari: Varroidae) tolerance of the miticide tau-fluvalinate. International Journal of Acarology. 2010;36(1):1–6.

42. Abbott WS. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology. 1925;18:265–7.

43. Vu PD. Toxicological Analysis of Acaricides for Varroa Mite Management: Virginia Tech; 2016.

44. Rinkevich FD, Danka RG, Healy KB. Influence of varroa mite (Varroa destructor) management practices on insecticide sensitivity in the honey bee (Apis mellifera). Insects. 2017;8(1):9.

45. Georghiou GP. Principles of insecticide resistance management. Phytoprotection. 1994;75 Suppl. 4:51–9.

46. Elzen PJ, Eischen FA, Baxter JR, Elzen GW, Wilson WT. Detection of resistance in US Varroa jacobsoni Oud.(Mesostigmata: Varroidae) to the acaricide fluvalinate. Apidologie. 1999;30:13–8.

47. Baxter J, Eischen F, Pettis J, Wilson W, Shimanuki H. Detection of fluvalinate-resistant Varroa mites in US honey bees. Am Bee J. 1998;138(4):291.

48. Spreafico M, Eördegh FR, Bernardinelli I, Colombo M. First detection of strains of Varroa destructor resistant to coumaphos. Results of laboratory tests and field trials. Apidologie. 2001;32(1):49–55.

49. Elzen P, Westervelt D. Detection of coumaphos resistance in Varroa destructor in Florida. American Bee Journal. 2002;142(4):291–2.

50. Maggi MD, Ruffinengo SR, Damiani N, Sardella NH, Eguaras MJ. First detection of Varroa destructor resistance to coumaphos in Argentina. Experimental and Applied Acarology. 2009;47(4):317–20. doi: 10.1007/s10493-008-9216-0 19009360

51. Finney DJ. Probit Analysis. 3rd ed. Cambridge, UK: Cambridge University Press; 1971. 333 p.

52. Robertson JL, Preistler HK. Pesticide Bioassays with Arthopods. Boca Raton, FL: CRC Press; 1992. 127 p.

53. Pettis J, Shimanuki H, Feldlaufer M. Detecting fluvalinate-resistant Varroa mites. American bee journal (USA). 1998.

Článek vyšel v časopise


2020 Číslo 1