Identification of the cleavage sites leading to the shed forms of human and mouse anti-aging and cognition-enhancing protein Klotho

Autoři: Ci-Di Chen aff001;  Yuexuan Li aff001;  Arthur K. Chen aff001;  Melissa A. Rudy aff001;  Jason S. Nasse aff001;  Ella Zeldich aff001;  Taryn J. Polanco aff001;  Carmela R. Abraham aff001
Působiště autorů: Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America aff001;  Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, United States of America aff002
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226382


Klotho is an age-extending, cognition-enhancing protein found to be down-regulated in aged mammals when age-related diseases start to appear. Low levels of Klotho occur in neurodegenerative diseases, kidney disease and many cancers. Many normal and pathologic processes involve the proteolytic shedding of membrane proteins. Transmembrane (TM) Klotho contains two homologous domains, KL1 and KL2 with homology to glycosidases. After shedding by ADAM 10 and 17, a shed Klotho isoform is released into serum and urine by the kidney, and into the CSF by the choroid plexus. We previously reported that human Klotho contains two major cleavage sites. However, the exact cleavage site responsible for the cleavage between the KL1 and KL2 domains remains unknown for the human Klotho, and both sites are unknown for mouse Klotho. In this study, we aimed to identify the cleavage sites leading to the shed forms of human and mouse Klotho. Mutations in the region close to the TM domain of mouse Klotho result in the reduced shedding of the 130 kD (KL1+KL2) and 70 kD (KL1) fragments, suggesting that the cleavage site lies within the mutated region. We further identified the cleavage sites responsible for the cleavage between KL1 and KL2 of human and mouse Klotho. Moreover, mutated Klotho proteins have similar subcellular localization patterns as wild type Klotho. Finally, in an FGF23 functional assay, all Klotho mutants with a nine amino acid deletion can also function as an FGFR1 co-receptor for FGF23 signaling, however, the signaling activity was greatly reduced. The study provides new and important information on Klotho shedding, and paves the way for studies aimed to distinguish between the distinct roles of the various isoforms of Klotho.

Klíčová slova:

Amyotrophic lateral sclerosis – Cognitive impairment – ERK signaling cascade – Kidneys – Molting – Mouse models – Sequence alignment – Coreceptors


1. Duce JA, Podvin S, Hollander W, Kipling D, Rosene DL, Abraham CR. Gene profile analysis implicates Klotho as an important contributor to aging changes in brain white matter of the rhesus monkey. Glia. 2008;56(1):106–17. Epub 2007/10/30. doi: 10.1002/glia.20593 17963266.

2. Abraham CR, Mullen PC, Tucker-Zhou T, Chen CD, Zeldich E. Klotho Is a Neuroprotective and Cognition-Enhancing Protein. Vitam Horm. 2016;101:215–38. doi: 10.1016/bs.vh.2016.02.004 27125744.

3. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51. Epub 1997/11/18. doi: 10.1038/36285 9363890.

4. Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309(5742):1829–33. Epub 2005/08/27. doi: 10.1126/science.1112766 16123266.

5. Nagai T, Yamada K, Kim HC, Kim YS, Noda Y, Imura A, et al. Cognition impairment in the genetic model of aging klotho gene mutant mice: a role of oxidative stress. FASEB J. 2003;17(1):50–2. doi: 10.1096/fj.02-0448fje 12475907.

6. Dubal DB, Zhu L, Sanchez PE, Worden K, Broestl L, Johnson E, et al. Life extension factor klotho prevents mortality and enhances cognition in hAPP transgenic mice. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2015;35(6):2358–71. doi: 10.1523/JNEUROSCI.5791-12.2015 25673831.

7. Dubal DB, Yokoyama JS, Zhu L, Broestl L, Worden K, Wang D, et al. Life extension factor klotho enhances cognition. Cell reports. 2014;7(4):1065–76. doi: 10.1016/j.celrep.2014.03.076 24813892.

8. Masso A, Sanchez A, Bosch A, Gimenez-Llort L, Chillon M. Secreted alphaKlotho isoform protects against age-dependent memory deficits. Mol Psychiatry. 2018;9:1937–47. Epub 2017/11/01. doi: 10.1038/mp.2017.211 29086766.

9. Zeldich E, Chen CD, Colvin TA, Bove-Fenderson EA, Liang J, Tucker Zhou TB, et al. The neuroprotective effect of Klotho is mediated via regulation of members of the redox system. J Biol Chem. 2014;289(35):24700–15. doi: 10.1074/jbc.M114.567321 25037225.

10. Cheng MF, Chen LJ, Niu HS, Yang TT, Lin KC, Cheng JT. Signals mediating Klotho-induced neuroprotection in hippocampal neuronal cells. Acta Neurobiol Exp (Wars). 2015;75(1):60–71. 25856523.

11. Brobey RK, German D, Sonsalla PK, Gurnani P, Pastor J, Hsieh CC, et al. Klotho Protects Dopaminergic Neuron Oxidant-Induced Degeneration by Modulating ASK1 and p38 MAPK Signaling Pathways. PloS one. 2015;10(10):e0139914. doi: 10.1371/journal.pone.0139914 26452228.

12. Baluchnejadmojarad T, Eftekhari SM, Jamali-Raeufy N, Haghani S, Zeinali H, Roghani M. The anti-aging protein klotho alleviates injury of nigrostriatal dopaminergic pathway in 6-hydroxydopamine rat model of Parkinson’s disease: Involvement of PKA/CaMKII/CREB signaling. Exp Gerontol. 2017;100:70–6. doi: 10.1016/j.exger.2017.10.023 29107062.

13. Xin YJ, Yuan B, Yu B, Wang YQ, Wu JJ, Zhou WH, et al. Tet1-mediated DNA demethylation regulates neuronal cell death induced by oxidative stress. Sci Rep. 2015;5:7645. doi: 10.1038/srep07645 25561289.

14. Chen CD, Sloane JA, Li H, Aytan N, Giannaris EL, Zeldich E, et al. The antiaging protein Klotho enhances oligodendrocyte maturation and myelination of the CNS. J Neurosci. 2013;33(5):1927–39. Epub 2013/02/01. doi: 10.1523/JNEUROSCI.2080-12.2013 23365232.

15. Zeldich E, Chen CD, Avila R, Medicetty S, Abraham CR. The Anti-Aging Protein Klotho Enhances Remyelination Following Cuprizone-Induced Demyelination. J Mol Neurosci. 2015;57(2):185–96. doi: 10.1007/s12031-015-0598-2 26067431.

16. Semba RD, Moghekar AR, Hu J, Sun K, Turner R, Ferrucci L, et al. Klotho in the cerebrospinal fluid of adults with and without Alzheimer’s disease. Neuroscience letters. 2014;558:37–40. doi: 10.1016/j.neulet.2013.10.058 24211693.

17. Emami Aleagha MS, Siroos B, Ahmadi M, Balood M, Palangi A, Haghighi AN, et al. Decreased concentration of Klotho in the cerebrospinal fluid of patients with relapsing-remitting multiple sclerosis. Journal of neuroimmunology. 2015;281:5–8. doi: 10.1016/j.jneuroim.2015.02.004 25867461.

18. Arking DE, Atzmon G, Arking A, Barzilai N, Dietz HC. Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res. 2005;96(4):412–8. doi: 10.1161/01.RES.0000157171.04054.30 15677572.

19. Arking DE, Krebsova A, Macek M Sr, Macek M Jr, Arking A, Mian IS, et al. Association of human aging with a functional variant of klotho. Proc Natl Acad Sci USA. 2002;99(2):856–61. Epub 2002/01/17. doi: 10.1073/pnas.022484299 11792841.

20. Yokoyama JS, Sturm VE, Bonham LW, Klein E, Arfanakis K, Yu L, et al. Variation in longevity gene KLOTHO is associated with greater cortical volumes. Ann Clin Transl Neurol. 2015;2(3):215–30. doi: 10.1002/acn3.161 25815349.

21. Shiraki-Iida T, Aizawa H, Matsumura Y, Sekine S, Iida A, Anazawa H, et al. Structure of the mouse klotho gene and its two transcripts encoding membrane and secreted protein. FEBS Lett. 1998;424(1–2):6–10. Epub 1998/04/16. doi: 10.1016/s0014-5793(98)00127-6 9537505.

22. Cha SK, Hu MC, Kurosu H, Kuro-o M, Moe O, Huang CL. Regulation of renal outer medullary potassium channel and renal K(+) excretion by Klotho. Mol Pharmacol. 2009;76(1):38–46. Epub 2009/04/08. doi: 10.1124/mol.109.055780 19349416.

23. Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro OM, Huang CL. Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA. 2008;105(28):9805–10. Epub 2008/07/09. doi: 10.1073/pnas.0803223105 18606998.

24. Chen G, Liu Y, Goetz R, Fu L, Jayaraman S, Hu MC, et al. alpha-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature. 2018;553(7689):461–6. Epub 2018/01/18. doi: 10.1038/nature25451 29342138.

25. Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, et al. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene. 2008;27(56):7094–105. doi: 10.1038/onc.2008.292 18762812.

26. Yamamoto M, Clark JD, Pastor JV, Gurnani P, Nandi A, Kurosu H, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem. 2005;280(45):38029–34. Epub 2005/09/28. doi: 10.1074/jbc.M509039200 16186101.

27. Kuro-o M. Klotho in health and disease. Current opinion in nephrology and hypertension. 2012;21(4):362–8. doi: 10.1097/MNH.0b013e32835422ad 22660551.

28. Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci USA. 2007;104(50):19796–801. Epub 2007/12/07. doi: 10.1073/pnas.0709805104 18056631.

29. Bloch L, Sineshchekova O, Reichenbach D, Reiss K, Saftig P, Kuro-o M, et al. Klotho is a substrate for alpha-, beta- and gamma-secretase. FEBS Lett. 2009;583(19):3221–4. Epub 2009/09/10. doi: 10.1016/j.febslet.2009.09.009 19737556.

30. Chen CD, Tung TY, Liang J, Zeldich E, Tucker Zhou TB, Turk BE, et al. Identification of cleavage sites leading to the shed form of the anti-aging protein klotho. Biochemistry. 2014;53(34):5579–87. doi: 10.1021/bi500409n 25110992.

31. Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A. 2007;104(50):19796–801. doi: 10.1073/pnas.0709805104 18056631.

32. Kato Y, Arakawa E, Kinoshita S, Shirai A, Furuya A, Yamano K, et al. Establishment of the anti-Klotho monoclonal antibodies and detection of Klotho protein in kidneys. Biochemical and biophysical research communications. 2000;267(2):597–602. doi: 10.1006/bbrc.1999.2009 10631108.

33. Caescu CI, Jeschke GR, Turk BE. Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10. The Biochemical journal. 2009;424(1):79–88. Epub 2009/09/01. doi: 10.1042/BJ20090549 19715556.

34. Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 2017;45(D1):D200–D3. Epub 2016/12/03. doi: 10.1093/nar/gkw1129 27899674.

35. Tsujikawa H, Kurotaki Y, Fujimori T, Fukuda K, Nabeshima Y. Klotho, a gene related to a syndrome resembling human premature aging, functions in a negative regulatory circuit of vitamin D endocrine system. Mol Endocrinol. 2003;17(12):2393–403. Epub 2003/10/07. doi: 10.1210/me.2003-0048 14528024.

36. Krajisnik T, Bjorklund P, Marsell R, Ljunggren O, Akerstrom G, Jonsson KB, et al. Fibroblast growth factor-23 regulates parathyroid hormone and 1alpha-hydroxylase expression in cultured bovine parathyroid cells. J Endocrinol. 2007;195(1):125–31. Epub 2007/10/04. doi: 10.1677/JOE-07-0267 17911404.

37. Kurosu H, Kuro OM. The Klotho gene family as a regulator of endocrine fibroblast growth factors. Mol Cell Endocrinol. 2009;299(1):72–8. Epub 2008/12/10. doi: 10.1016/j.mce.2008.10.052 19063940.

38. Masso A, Sanchez A, Gimenez-Llort L, Lizcano JM, Canete M, Garcia B, et al. Secreted and Transmembrane alphaKlotho Isoforms Have Different Spatio-Temporal Profiles in the Brain during Aging and Alzheimer’s Disease Progression. PloS one. 2015;10(11):e0143623. doi: 10.1371/journal.pone.0143623 26599613.

Článek vyšel v časopise


2020 Číslo 1