#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Reconstructing Krassilovia mongolica supports recognition of a new and unusual group of Mesozoic conifers


Autoři: Fabiany Herrera aff001;  Gongle Shi aff002;  Chris Mays aff003;  Niiden Ichinnorov aff005;  Masamichi Takahashi aff006;  Joseph J. Bevitt aff007;  Patrick S. Herendeen aff001;  Peter R. Crane aff008
Působiště autorů: Chicago Botanic Garden, Glencoe, Illinois, United States of America aff001;  State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, People’s Republic of China aff002;  Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden aff003;  School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia aff004;  Institute of Paleontology and Geology, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia aff005;  Department of Environmental Sciences, Faculty of Science, Niigata University, Nishi-ku, Niigata, Japan aff006;  Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New South Wales, Australia aff007;  Oak Spring Garden Foundation, Upperville, Virginia, United States of America aff008;  School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, United States of America aff009
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0226779

Souhrn

Previously unrecognized anatomical features of the cone scales of the enigmatic Early Cretaceous conifer Krassilovia mongolica include the presence of transversely oriented paracytic stomata, which is unusual for all other extinct and extant conifers. Identical stomata are present on co-occurring broad, linear, multiveined leaves assigned to Podozamites harrisii, providing evidence that K. mongolica and P. harrisii are the seed cones and leaves of the same extinct plant. Phylogenetic analyses of the relationships of the reconstructed Krassilovia plant place it in an informal clade that we name the Krassilovia Clade, which also includes Swedenborgia cryptomerioides–Podozamites schenkii, and Cycadocarpidium erdmanni–Podozamites schenkii. All three of these plants have linear leaves that are relatively broad compared to most living conifers, and that are also multiveined with transversely oriented paracytic stomata. We propose that these may be general features of the Krassilovia Clade. Paracytic stomata, and other features of this new group, recall features of extant and fossil Gnetales, raising questions about the phylogenetic homogeneity of the conifer clade similar to those raised by phylogenetic analyses of molecular data.

Klíčová slova:

Conifers – Flowering plants – Leaves – Phylogenetic analysis – Seeds – Stomata – Paleobotany – Plant fossils


Zdroje

1. Govaerts R, Farjon A. World Checklist of Conifers. Facilitated by the Royal Botanic Gardens, Kew. 2010. http://wcsp.science.kew.org/. Retrieved 8 July 2019.

2. Engler A, Prantl K. Die Natürlichen Pflanzenfamilien. Teile II-IV; 1897.

3. Chamberlain CJ. Gymnosperms. Structure and evolution. Chicago: University of Chicago Press; 1935.

4. Sporne KR. The morphology of gymnosperms. London: Hutchinson University Library; 1965.

5. Crane PR. Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Mo Bot Gard. 1985; 72: 716–793.

6. Crane PR. Phylogenetic relationships in seed plants. Cladistics. 1985; 1: 329–348.

7. Crane PR. Major clades and relationships in the “higher” gymnosperms. In: Beck CB, editor. Origin and Evolution of Gymnosperms. New York: Columbia University Press; 1988. pp. 218–272.

8. Doyle JA, Donoghue MJ. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Botanical Review. 1986; 52: 321–431.

9. Doyle JA. Seed plant phylogeny and the relationships of the Gnetales. Int J Plant Sci. 1996; 157 (6, Suppl.): S3–S39.

10. Rothwell GW, Serbet R. Lignophyte phylogeny and the evolution of spermatophytes: a numerical cladistic analysis. Syst Bot. 1994; 19: 443–482.

11. Miller CN. Implications of fossil conifers for the phylogenetic relationships of living families. Bot Rev. 1999; 65: 239–277.

12. Stefanović S, Jager M, Deutsch J, Broutin J, Masselot M. Phylogenetic relationships of conifers inferred from partial 28S rRNA gene sequences. Am J Bot. 1998; 85: 688–697. 21684951

13. Rydin C, Källersjö M, Friis EM. Seed plant relationships and the systematic position of Gnetales based on nuclear and chloroplast DNA: conflicting data, rooting problems, and the monophyly of conifers. Int J Plant Sci. 2002; 163:197–214.

14. Hansen A, Hansmann S, Samigullin T, Antonov A, Martin W. Gnetum and the angiosperms: molecular evidence that their shared morphological characters are convergent, rather than homologous Mol Biol Evol. 1999; 16: 1006–1009.

15. Qiu Y-L, Lee JH, Bernasconi-Quadroni F, Soltis DE, Soltis PS, Zanis, et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature. 1999; 402: 404–407. doi: 10.1038/46536 10586879

16. Bowe LM, Coat G, dePamphilis CW. Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA. 2000; 97: 4092–4097. doi: 10.1073/pnas.97.8.4092 10760278

17. Chaw SM, Parkinson CL, Cheng YC, Vincent TM, Palmer JD. Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA. 2000; 97: 4086–4091. doi: 10.1073/pnas.97.8.4086 10760277

18. Donoghue MJ, Doyle JA. Seed plant phylogeny: demise of the anthophyte hypothesis? Curr Biol. 2000; 10: R106–R109. doi: 10.1016/s0960-9822(00)00304-3 10679315

19. Soltis DE, Soltis PS, Zanis MJ. Phylogeny of seed plants based on evidence from eight genes. Am J Bot. 2002; 89: 1670–1681. doi: 10.3732/ajb.89.10.1670 21665594

20. Burleigh JG, Mathews S. Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. Am J Bot. 2004; 91: 1599–1613. doi: 10.3732/ajb.91.10.1599 21652311

21. Zhong B, Yonezawa T, Zhong Y, Hasegawa M. The position of gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics. Mol Biol Evol. 2010; 27: 2855–2863. doi: 10.1093/molbev/msq170 20601411

22. Xi Z, Rest JS, Davis CC. Phylogenomics and coalescent analyses resolve extant seed plant relationships. PLoS ONE. 2013; 8: e80870. doi: 10.1371/journal.pone.0080870 24278335

23. Forest F, Moat J, Baloch E, Brummitt NA, Bachman SP, Ickert-Bond S, et al. Gymnosperms on the EDGE. Sci Rep. 2018; 8: 6053. doi: 10.1038/s41598-018-24365-4 29662101

24. Ran JH, Shen TT, Wu H, Gong X, Wang XQ. Phylogeny and evolutionary history of Pinaceae updated by transcriptomic analysis. Mol Phylogenet Evol. 2018; 129: 106–116. doi: 10.1016/j.ympev.2018.08.011 30153503

25. Coiro M, Chomicki G. Doyle JA. Experimental signal dissection and method sensitivity analyses reaffirm the potential of fossils and morphology in the resolution of the relationship of angiosperms and Gnetales. Paleobiology. 2018; 44: 490–510.

26. Friis EM, Crane PR, Pedersen KR, Bengtson S, Donoghue PCJ, Grimm GW, et al. Phase contrast enhanced synchrotronradiation X-ray analyses of Cretaceous seeds link Gnetales to extinct Bennettitales. Nature. 2007; 450: 549–552.

27. Friis EM, Pedersen KR, Crane PR. Early Cretaceous mesofossils from Portugal and eastern North America related to the Bennettitales-Erdtmanithecales-Gnetales group. Am J Bot. 2009; 96: 252–283. doi: 10.3732/ajb.0800113 21628188

28. Friis EM, Pedersen KR, Crane PR. New diversity among chlamydospermous seeds from the Early Cretaceous of Portugal and North America. Int J Plant Sci. 2013; 174: 530–558.

29. Friis EM, Pedersen KR, Crane PR. Chlamydospermous seeds document the diversity and abundance of extinct gnetalean relatives in Early Cretaceous vegetation. Int J Plant Sci. 2019; 180: 643–666.

30. Rothwell GW, Stockey RA. Phylogenetic diversification of Early Cretaceous seed plants: the compound seed cone of Doylea tetrahedrasperma. Am J Bot. 2016; 103: 923–937. doi: 10.3732/ajb.1600030 27208360

31. Shi G, Leslie AB, Herendeen PS, Herrera F, Ichinnorov N, Takahashi M, et al. Early Cretaceous Umkomasia from Mongolia: implications for homology of corystosperm cupules. New Phytol. 2016; 210: 1418–1429. doi: 10.1111/nph.13871 26840646

32. Shi G, Crane PR, Herendeen PS, Ichinnorov N, Takahashi M, Herrera F. Diversity and homologies of corystosperm seed-bearing structures from the Early Cretaceous of Mongolia. J Syst Palaeontol. 2019; 17: 997–1029. doi: 10.1080/14772019.2018.1493547

33. Harris TM. The fossil flora of Scoresby Sound East Greenland. Part 4: Ginkgoales, Coniferales, Lycopodiales and isolated fructifications. Meddelelser om Grønland. 1935; 112: 1–176.

34. Stewart WN, Rothwell GW. Paleobotany and the Evolution of Plants. 2nd ed. New York: Cambridge University; 1993.

35. Taylor TN, Taylor EL, Krings M. Paleobotany: the biology and evolution of fossil plants. 2nd ed. Burlington: Academic Press; 2009.

36. Leslie AB, Beaulieu J, Holman G, Campbell CS, Mei W, Raubeson LR, et al. An overview of extant conifer evolution from the perspective of the fossil record. Am J Bot. 2018; 105: 1–14.

37. Florin R. Die koniferen des Oberkarbons und des unteren Perms I–VII. Palaeontogr B. 1938–1945; 85: 1–729.

38. Florin R. Evolution in cordaites and conifers. Acta Horti Bergiani. 1951; 15: 285–388.

39. Florin R. The female reproductive organs of conifers and taxads. Biol Rev. 1954; 29: 367–389.

40. Miller CN. Mesozoic conifers. Bot Rev. 1977; 43: 218–280.

41. Miller CN. Current status of Paleozoic and Mesozoic conifers. Rev Palaeobot Palynol. 1982; 37: 99–114.

42. Clement-Westerhof JA. Aspects of Permian palaeobotany and palynology. VII. The Majonicaceae, a new family of Late Permian conifers. Rev Palaeobot Palynol. 1987; 52: 375–402.

43. Mapes G, Rothwell GW. Diversity among Hamilton conifers. In: Mapes, Mapes RH editors. Regional Geology and Paleontology of Upper Paleozoic Hamilton Quarry Area in Southeastern Kansas. Kansas Geological Survey; 1988. pp 225–244.

44. Meyen SV. Permian conifers of western Anagaraland. Rev Palaeobot Palynol. 1997; 96: 351–447.

45. Serbet R, Escapa I, Taylor TN, Taylor EL, Cúneo NR. Additional observations on the enigmatic Permian plant Buriadia and implications on early coniferophyte evolution. Rev Palaeobot Palynol. 2010; 161: 168–178

46. Bomfleur B, Decombeix AL, Escapa IH, Schwendemann AB, Axsmith B. Whole-plant concept and environment reconstruction of a Telemachus conifer (Voltziales) from the Triassic of Antarctica. Int J Plant Sci. 2013; 174: 425–444.

47. Rothwell GW, Mapes G, Hernández-Castillo GR. Hanskerpia gen. nov. and phylogenetic relationships among the most ancient conifers (Voltziales). Taxon. 2005; 54: 733–750.

48. Escapa IH, Decombeix AL, Taylor EL, Taylor TN. Evolution and relationships of the conifer seed cone Telemachus: evidence from the Triassic of Antarctica. Int J Plant Sci. 2010; 171: 560–573.

49. Herrera F, Shi G, Leslie AB, Knopf P, Ichinnorov N, Takahashi M, et al. A new voltzian seed cone from the Early Cretaceous of Mongolia and its implications for the evolution of ancient conifers. Int J Plant Sci. 2015; 176: 791–809.

50. Hasegawa H, Ando H, Hasebe N, Ichinnorov N, Ohta T, Hasegawa T, et al. Depositional ages and characteristics of Middle–Upper Jurassic and Lower Cretaceous lacustrine deposits in southeastern Mongolia. Island Arc. 2018; 27: e12243. doi: 10.1111/iar.12243

51. Ichinnorov N. Palynocomplex of the Lower Cretaceous sediments of Eastern Mongolia. Mong Geosci. 2003; 22: 12–16.

52. Nichols DJ, Matsukawa M, Ito M. Palynology and age of some Cretaceous nonmarine deposits in Mongolia and China. Cretaceous Res. 2006; 27: 241–251.

53. Royer DL, Sack L, Wilf P, Lusk CH, Jordan GJ, Niinemets U, et al. Fossil leaf economics quantified: calibration, Eocene case study, and implications. Paleobiology. 2007; 33: 574–589.

54. Royer DL, Miller IM, Peppe DJ, Hickey LJ. Leaf economic traits from fossils support a weedy habit for early angiosperms. Am J Bot. 2010; 97: 438–445. doi: 10.3732/ajb.0900290 21622407

55. Peppe DJ, Baumgartner A, Flynn A, Blonder B. Reconstructing Paleoclimate and Paleoecology Using Fossil Leaves. In: Croft D, Su D, Simpson S, editors. Methods in Paleoecology: Reconstructing Cenozoic Terrestrial Environments and Ecological Communities, Vertebrate Paleobiology and Paleoanthropology. Springer International Publishing; 2018. pp. 289–317.

56. Mays C, Cantrill DJ, Stilwell JD, Bevitt JJ. Neutron tomography of Austrosequoia novae-zeelandiae comb. nov. (Late Cretaceous, Chatham Islands, New Zealand): implications for Sequoioideae phylogeny and biogeography. J Syst Palaeontol. 2018; 16: 551–570. doi: 10.1080/14772019.2017.1314898

57. Schweitzer HJ. Der weibliche Zapfen von Pseudovoltzia liebeana und seine Bedeutung für die Phylogenie der Koniferen. Palaeontographica B. 1963; 113: 1–29.

58. Looy CV, Stevenson RA. Earliest occurrence of autorotating seeds in conifers: the Permian (Kungurian-Roadian) Manifera talaris gen. et sp. nov. Int J Plant Sci. 2014; 175: 841–854.

59. Hernandez-Castillo GR, Stockey RA, Rothwell GW, Mapes G. Reconstructing Emporia lockardii (Voltziales: Emporiaceae) and initial thoughts on Paleozoic conifer ecology. Int J Plant Sci. 2009; 170: 1056–1074.

60. Hernandez-Castillo GR, Stockey RA, Rothwell GW, Mapes G. Reconstruction of the Pennsylvanian-age walchian conifer Emporia cryptica sp. nov. (Emporiaceae: Voltziales). Rev Palaeobot Palynol. 2009; 157: 218–237.

61. Hernandez-Castillo GR, Stockey RA, Mapes G, Rothwell GW. A new voltzialean conifer Emporia royalii sp. nov. (Emporiaceae) from the Hamilton Quarry, Kansas. Int J Plant Sci. 2009; 170: 1201–1227.

62. Schweitzer HJ, Kirchner M. Die rhäto-jurassischen Floren des Iran und Afghanistan: 9. Coniferophyta. Palaeontographica Abteilung B. 1996; 238, 77–139.

63. Shi G, Herrera F, Herendeen PS, Leslie AB, Ichinnorov N, Takahashi M, et al. Leaves of Podozamites and Pseudotorellia from the Early Cretaceous of Mongolia: stomatal patterns and implications for relationships. J Syst Palaeontol. 2018; 16: 111–137.

64. Shi G, Leslie AB, Herendeen PS, Ichinnorov N, Takahashi M, Knopf P, et al. Whole-plant reconstruction and phylogenetic relationships of Elatides zhoui sp. nov. (Cupressaceae) from the Early Cretaceous of Mongolia. Int J Plant Sci. 2014; 175: 911–930.

65. Leslie AB, Glasspool I, Herendeen PS, Ichinnorov N, Knopf P, Takahashi M, et al. Pinaceae-like reproductive morphology in Schizolepidopsis canicularis sp. nov. from the Early Cretaceous (Aptian-Albian) of Mongolia. Am J Bot. 2013; 100: 2426–2436. doi: 10.3732/ajb.1300173 24285570

66. Ash SR. Late Triassic plants from the Chinle Formation in north-eastern Arizona. Palaeontology. 1972; 15: 598–618.

67. Harris TM. The fossil flora of Scoresby Sound East Greenland. Part 5: Stratigraphic relations of the plant beds. Meddelelser om Grønland. 1937; 112: 1–114.

68. Swofford DL. PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4. Sinauer, Sunderland, MA. 2002.

69. Krassilov VA. Early Cretaceous flora of Mongolia. Palaeontographica B. 1982; 181:1–43.

70. Herrera F, Shi G, Ichinnorov N, Takahashi M., Bugdaeva EV, Herendeen PS, et al. The presumed ginkgophyte Umaltolepis has seed-bearing structures resembling those of Peltaspermales and Umkomasiales. Proc Natl Acad Sci USA. 2017; 114: E2385–E2391. doi: 10.1073/pnas.1621409114 28265050

71. Farjon A. A monograph of Cupressaceae and Sciadopitys. 1st ed. Kew: Royal Botanic Garden; 2005.

72. Farjon A. 2010. Handbook of the world’s conifers (2 volumes). Leiden: Brill; 2010.

73. Anderson JM, Anderson HM. Heyday of the gymnosperms: systematics and biodiversity of the Late Triassic Molteno fructifications. Strelitzia. 2003; 15: 1–398.

74. Nosova N, van Konijnenburg-van Cittert JH-A, Kiritchkova A. New data on the epidermal structure of the leaves of Podozamites Braun. Rev Palaeobot Palynol. 2017; 238: 88–104.

75. Axsmith BJ, Taylor TN, Taylor EL. Anatomically preserved leaves of the conifer Notophytum krauselii (Podocarpaceae) from the Triassic of Antarctica. Am J Bot. 1998; 85: 704–713. 21684953

76. Rudall PJ, Rice CL. Epidermal patterning and stomatal development in Gnetales. Ann Bot. 2019; 124: 149–164. doi: 10.1093/aob/mcz053 31045221

77. Rudall PJ, Hilton J, Bateman RM. Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants. New Phytol. 2013; 200: 598–614. doi: 10.1111/nph.12406 23909825

78. Rudall PJ, Bateman RM. Leaf surface development and the plant fossil record: stomatal patterning in extinct Bennettitales. Biol. Rev. 2019; 94: 1179–1194.

79. Harris TM. The Rhaetic flora of Scoresby Sound, East Greenland. Medd Gronland Kjobenhavn. 1926; 68: 45–148.

80. Harris TM. The Yorkshire Jurassic Flora. III. Bennettitales. London: British Museum (Natural History); 1969.

81. Watson J, Sincock CA. Bennettitales of the English Wealden. Monogr Palaeontogr Soc. 1992; 145: 2–228.

82. Kunzmann L, Mohr BAR, Bernardes-de-Oliveira MEC. Cearania heterophylla gen. nov. et sp. nov., a fossil gymnosperm with affinities to the Gnetales from the Early Cretaceous of northern Gondwana. Rev Palaeobot Palynol. 2009; 158: 193–212.

83. Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. Nature. 2004; 428: 821–827. doi: 10.1038/nature02403 15103368

84. Harris TM. Two neglected aspects of fossil conifers. Am J Bot. 1976; 63: 902–910.

85. Losada JM, Blanco‐Moure N, Leslie AB. Not all ‘pine cones’ flex: functional trade‐offs and the evolution of seed release mechanisms. New Phytol. 2018, 222: 396–407. doi: 10.1111/nph.15563 30367490

86. Herrera F, Leslie AB, Shi G, Knopf P, Ichinnorov N, Takahashi M, et al. New fossil Pinaceae from the Early Cretaceous of Mongolia. Botany. 2016; 94: 885–915.

87. Herrera F, Shi G, Knopf P, Leslie AB, Ichinnorov N, Takahashi M, et al. Cupressaceae conifers from the Early Cretaceous of Mongolia. Int J Plant Sci. 2017; 178: 19–41.

88. Herrera F, Moran RC, Shi G, Ichinnorov N, Takahashi M, Crane PR, et al. An exquisitely preserved filmy fern (Hymenophyllaceae) from the Early Cretaceous of Mongolia. Am J Bot. 2017; 104: 1370–1381. doi: 10.3732/ajb.1700246 29885232

89. Farjon A. Pinaceae. Drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. 1st ed. Konigstein: Koeltz Scientific Books; 1990.

90. Grauvogel-Stamm L. La flora du Grès a Voltzia (Buntsandstein supèrieur) des Vosges du Nord (France): morphologie, anatomie, interpretations phylogénique et paléogéographique. Memoirs Sciences Géologique, Université Louis Pasteur de Strasbourg, Institut de Géologie. 1978.

91. Rothwell GW, Grauvogel-Stamm L, Mapes G. An herbaceous fossil conifer: Gymnospermous ruderals in the evolution of Mesozoic vegetation. Palaeogeogr Palaeoclimatol Palaeoecol. 2000; 156: 139–145.

92. Rothwell GW, Mapes G. Barthelia furcata gen. et sp. nov., with a review of Paleozoic coniferophytes and a discussion of coniferophyte systematics. Int J Plant Sci. 2001; 162: 637–677.

93. Delevoryas T, Morgan J. A new pteridosperm from Upper Pennsylvanian deposits of North America. Palaeontographica B. 1954; 96: 12–23.

94. Delevoryas T. The shoot apex of Callistophyton poroxyloides. Contrib Mus Paleontol Univ Mich. 1956; 12: 285–299.

95. Rothwell GW. The Callistophytaceae (Pteridospermopsida): I. Vegetative structures. Palaeontographica B. 1975; 151: 171–196.

96. Rothwell GW. The Callistophytales (Pteridospermopsida): Reproductively sophisticated Paleozoic gymnosperms. Rev Palaeobot Palynol. 1981; 32: 103–121.

97. Rothwell GW, Warner S. Cordaixylon dumusum n. sp. (Cordaitales). I. Vegetative structures. Bot Gaz. 1984; 145: 275–291.

98. Rothwell GW. Cordaixylon dumusum (Cordaitales). II. Reproductive biology, phenology, and growth ecology. Int J Plant Sci. 1993; 154: 572–586.

99. Florin R. On the morphology and taxonomic position of the genus Cycadocarpidium Nathorst (Coniferae). Acta Horti Bergiani. 1953; 16: 257–275.

100. Barthel M. Die Gattung Dicranophyllum Gr. Eury in den varistischen Innensenken der DDR. Hallesches Jahrbuch für Geowissenschaften. 1977; 2: 73–86.

101. Barthel M, Noll R. On the growth habit of Dicranophyllum hallei Remy et Remy. Veröffentlichungen des Naturhistorischen Museums Schleusingen. 1999; 14: 59–64.

102. Archangelsky S, Cúneo R. Ferugliocladaceae, a new conifer family from the Permian of Gondwana. Rev Palaeobot Palynol. 1987; 51: 3–30.

103. Cúneo R. Ejemplares fértiles de Genoites patagonica Feruglio (Buriadiaceae, Coniferopsida?) del Pérmico de Chubut, República Argentina. Ameghiniana. 1985; 22: 269–279.

104. Trivett ML, Rothwell GW. Morphology, systematics and paleoecology of Paleozoic fossil plants: Mesoxylon priapi, sp. nov. (Cordaitales). Syst Bot. 1985; 10: 205–223.

105. Florin R. Über Ortiseia leonardii n. gen. et sp., eine Konifere aus den Grodener Schichten in Alto Adige (Sudtirol). Memorie Geopalaeontologiche dell’Universita di Ferrara. 1964; 1: 3–11.

106. Clement-Westerhof JA. Aspects of Permian palaeobotany and palynology. IV. The conifer Ortiseia Florin from the Val Gardena Formation of the Dolomites and the Vicentinian Alps (Italy) with special reference to a revised concept of the Walchiaceae (Göppert) Schimper. Rev Palaeobot Palynol. 1984; 41: 51–166

107. Kerp H, Poort RJ, Swinkels HAJM, Verwer R. Aspects of Permian palaeobotany and palynology. IX. Conifer dominated Rotliegend floras from the Saar-Nahe Basin (?Late Carboniferous-Early Permian; SW-Germany) with special reference to the reproductive biology of early conifers. Rev Palaeobot Palynol. 1990; 62: 205–248.

108. Florin R. Preliminary descriptions of some Palaeozoic genera of Coniferae. Arkiv Bot. 1927; 21: 1–7.

109. Bomfleur B, Serbet R, Taylor EL, Taylor TN. The possible pollen cone of the Late Triassic conifer Heidiphyllum/Telemachus (Voltziales) from Antarctica. Antarct Sci. 2011; 23: 379–385.

110. Hernandez-Castillo GR, Stockey RA, Rothwell GW, Mapes G. Thucydiaceae fam. nov., with a review and reevaluation of Paleozoic walchian conifers. Int J Plant Sci. 2001; 162: 1155–1185.

111. Hernandez-Castillo GR, Stockey RA, Rothwell GW, Mapes G. Growth architecture of Thucydia mahoningensis, a model for walchian conifer plants. Int J Plant Sci. 2003; 164: 443–452.

112. Mapes G, Rothwell GW. Structure and relationship of primitive conifers. Neues Jahrb. Palaeontol. Abh. 1991; 183: 269–287.

113. Rothwell GW, Mapes G. Validation of the names Utrechtiaceae, Utrechtia, and Utrechtia floriniflormis. Taxon. 2003; 52: 329–330.

114. Rothwell GW, Mapes G, and Mapes RH. Anatomically preserved vojnovskyalean seed plants in Upper Pennsylvanian (Stephanian) marine shales of North America. J Paleontol. 1996; 70: 1067–1079.

115. Schweitzer HJ. Voltzia hexagona (Gischoff) Geinitz aus dem Mittleren Perm Westdeutschlands. Palaeontogr B. 1996; 239: 1–22.


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#