Hesperidin improves insulin resistance via down-regulation of inflammatory responses: Biochemical analysis and in silico validation

Autoři: Kanwal Rehman aff001;  Syeda Mehak Munawar aff002;  Muhammad Sajid Hamid Akash aff003;  Manal Ali Buabeid aff004;  Tahir Ali Chohan aff005;  Muhammad Tariq aff006;  Komal Jabeen aff001;  El-Shaimaa A. Arafa aff004
Působiště autorů: Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan aff001;  Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan aff002;  Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan aff003;  Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates aff004;  Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan aff005;  Department of Pharmacology, Lahore Pharmacy College, Lahore, Pakistan aff006
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227637


Leptin resistance and co-existing insulin resistance is considered as hallmark of diet-induced obesity. Here, we investigated therapeutic potential of hesperidin to improve leptin and insulin resistance using high fat diet (HFD)-induced obese experimental animal model. We also performed in silico studies to validate therapeutic effectiveness of hesperidin by performing protein-ligand docking and molecular dynamics simulation studies. Group 1 was identified as control group receiving vehicle only. Group 2 was marked as non-treated group receiving 60% HFD. While, other groups were treated daily with orlistat (120 mg/kg/d), hesperidin (55 mg/kg/d), combination of hesperidin (55 mg/kg/d) + orlistat (120 mg/kg/d). Hesperidin alone (P<0.001) and particularly in combination with orlistat (P<0.001), resulted in controlling the levels of HFD-altered biomarkers including random and fasting state of glycemia, leptin and insulin resistance. Similarly, hesperidin also improved the serum and tissue levels of leptin, interleukin-6 and tumor necrosis factor-alpha more significantly (P<0.05) when compared with that of orlistat. These results were found to be in accordance with the results of histopathological examination of pancreas, liver and adipose tissues. In-silico studies also proved that hesperidin binds to leptin receptor with higher affinity as compared to that of orlistat and induces the favorable variations in geometrical conformation of leptin receptor to promote its association with leptin which may lead to the cascades of reactions culminating the lipolysis of fats that may ultimately lead to cure obesity. The results of this study may be a significant expectation among the forthcoming treatment strategies for leptin and insulin resistance.

Klíčová slova:

Biochemical simulations – Free energy – Inflammation – Insulin resistance – Molecular dynamics – Obesity – Protein structure – leptin


1. Sainz N, Barrenetxe J, Moreno-Aliaga MJ, Martinez JA. Leptin resistance and diet-induced obesity: central and peripheral actions of leptin. Metabolism: clinical and experimental. 2015;64(1):35–46. Epub 2014/12/17. doi: 10.1016/j.metabol.2014.10.015 25497342.

2. Harris RBS. Direct and indirect effects of leptin on adipocyte metabolism. Biochim Biophys Acta. 2014;1842(3):414–23. Epub 05/17. doi: 10.1016/j.bbadis.2013.05.009 23685313.

3. Martin SS, Qasim A, Reilly MP. Leptin resistance: a possible interface of inflammation and metabolism in obesity-related cardiovascular disease. J Am Coll Cardiol. 2008;52(15):1201–10. doi: 10.1016/j.jacc.2008.05.060 18926322.

4. Bjørbaek C. Central leptin receptor action and resistance in obesity. J Investig Med. 2009;57(7):789–94. doi: 10.2310/JIM.0b013e3181bb0d49 20029269.

5. Jung UJ, Choi M-S. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223. doi: 10.3390/ijms15046184 24733068.

6. Hryhorczuk C, Decarie-Spain L, Sharma S, Daneault C, Rosiers CD, Alquier T, et al. Saturated high-fat feeding independent of obesity alters hypothalamus-pituitary-adrenal axis function but not anxiety-like behaviour. Psychoneuroendocrinology. 2017;83:142–9. Epub 2017/06/18. doi: 10.1016/j.psyneuen.2017.06.002 28623763.

7. Polyzos SA, Kountouras J, Mantzoros CS. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva endocrinologica. 2017;42(2):92–108. Epub 2016/10/07. doi: 10.23736/S0391-1977.16.02563-3 27711029.

8. Wabitsch M, Funcke JB, Lennerz B, Kuhnle-Krahl U, Lahr G, Debatin KM, et al. Biologically inactive leptin and early-onset extreme obesity. The New England journal of medicine. 2015;372(1):48–54. Epub 2015/01/01. doi: 10.1056/NEJMoa1406653 25551525.

9. Shalaby HMA, Tawfek NS, Abo-El Hussein BK, Abd MSEM. The assessment of some biochemical and immunological effects by amphetamine and orlistat on obesity in rats. Food Public Health. 2014;4(4):185–92.

10. Ali Khan R, Kapur P, Jain A, Farah F, Bhandari U. Effect of orlistat on periostin, adiponectin, inflammatory markers and ultrasound grades of fatty liver in obese NAFLD patients. Therapeutics and clinical risk management. 2017;13:139–49. doi: 10.2147/TCRM.S124621 28260907.

11. Al-Tahami BA, Ismail AA, Bee YT, Awang SA, Salha Wan Abdul Rani WR, Sanip Z, et al. The effects of anti-obesity intervention with orlistat and sibutramine on microvascular endothelial function. Clinical hemorheology and microcirculation. 2015;59(4):323–34. Epub 2013/09/05. doi: 10.3233/CH-131765 24002121.

12. Chen M, Borlak J, Tong W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology (Baltimore, Md). 2013;58(1):388–96. Epub 2012/12/22. doi: 10.1002/hep.26208 23258593.

13. Kose M, Emet S, Akpinar TS, Ilhan M, Gok AF, Dadashov M, et al. An Unexpected Result of Obesity Treatment: Orlistat-Related Acute Pancreatitis. Case reports in gastroenterology. 2015;9(2):152–5. Epub 2015/06/17. doi: 10.1159/000430433 26078734; PubMed Central PMCID: PMC4464098.

14. Walter J, Navarro V, Rossi S. Drug-induced Liver Injury Associated with Weight Loss Supplements. Curr Hepatology Rep. 2018;17(3):245–53. doi: 10.1007/s11901-018-0409-7

15. Campanero MA, Escolar M, Perez G, Garcia-Quetglas E, Sadaba B, Azanza JR. Simultaneous determination of diosmin and diosmetin in human plasma by ion trap liquid chromatography–atmospheric pressure chemical ionization tandem mass spectrometry: Application to a clinical pharmacokinetic study. J Pharm Biomed Anal. 2010;51(4):875–81. doi: 10.1016/j.jpba.2009.09.012 19800189

16. Kalpana KB, Srinivasan M, Menon VP. Evaluation of antioxidant activity of hesperidin and its protective effect on H2O2 induced oxidative damage on pBR322 DNA and RBC cellular membrane. Molecular and cellular biochemistry. 2009;323(1–2):21–9. Epub 2008/11/29. doi: 10.1007/s11010-008-9960-9 19039655.

17. Al-Ashaal HA, El-Sheltawy ST. Antioxidant capacity of hesperidin from citrus peel using electron spin resonance and cytotoxic activity against human carcinoma cell lines. Pharmaceutical biology. 2011;49(3):276–82. Epub 2011/02/18. doi: 10.3109/13880209.2010.509734 21323480.

18. Visnagri A, Kandhare AD, Chakravarty S, Ghosh P, Bodhankar SL. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharmaceutical biology. 2014;52(7):814–28. Epub 2014/02/25. doi: 10.3109/13880209.2013.870584 24559476.

19. Lipson SM, Ozen FS, Louis S, Karthikeyan L. Comparison of alpha-glucosyl hesperidin of citrus fruits and epigallocatechin gallate of green tea on the Loss of Rotavirus Infectivity in Cell Culture. Frontiers in microbiology. 2015;6:359. Epub 2015/05/15. doi: 10.3389/fmicb.2015.00359 25972850; PubMed Central PMCID: PMC4413797.

20. Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM. Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. Journal of diabetes and its complications. 2012;26(6):483–90. Epub 2012/07/20. doi: 10.1016/j.jdiacomp.2012.06.001 22809898.

21. Matias I, Diniz LP, Buosi A, Neves G, Stipursky J, Gomes FCA. Flavonoid Hesperidin Induces Synapse Formation and Improves Memory Performance through the Astrocytic TGF-beta1. Frontiers in aging neuroscience. 2017;9:184. Epub 2017/07/01. doi: 10.3389/fnagi.2017.00184 28659786; PubMed Central PMCID: PMC5468382.

22. Pari L, Karthikeyan A, Karthika P, Rathinam A. Protective effects of hesperidin on oxidative stress, dyslipidaemia and histological changes in iron-induced hepatic and renal toxicity in rats. Toxicology reports. 2015;2:46–55. Epub 2014/11/07. doi: 10.1016/j.toxrep.2014.11.003 28962336; PubMed Central PMCID: PMC5598436.

23. Yasım A, Özbağ D, Kılınç M, Çıralık H, Toru İ. The effect of diosmin-hesperidin combination treatment on the lipid profile and oxidativeantioxidative system in high-cholesterol diet-fed rats. Türk Göğüs Kalp Damar Cerrahisi Dergisi. 2011;1:55–61.

24. Miyake Y, Yamamoto K, Tsujihara N, Osawa T. Protective effects of lemon flavonoids on oxidative stress in diabetic rats. Lipids. 1998;33(7):689–95. Epub 1998/08/04. doi: 10.1007/s11745-998-0258-y 9688172.

25. Li W, Kandhare AD, Mukherjee AA, Bodhankar SL. Hesperidin, a plant flavonoid accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats: Role of TGF-ß/Smads and Ang-1/Tie-2 signaling pathways. EXCLI J. 2018;17:399–419. doi: 10.17179/excli2018-1036 29805347.

26. Akiyama S, Katsumata S, Suzuki K, Ishimi Y, Wu J, Uehara M. Dietary hesperidin exerts hypoglycemic and hypolipidemic effects in streptozotocin-induced marginal type 1 diabetic rats. Journal of clinical biochemistry and nutrition. 2010;46(1):87–92. Epub 2010/01/28. doi: 10.3164/jcbn.09-82 20104270; PubMed Central PMCID: PMC2803138.

27. Agrawal YO, Sharma PK, Shrivastava B, Ojha S, Upadhya HM, Arya DS, et al. Hesperidin produces cardioprotective activity via PPAR-gamma pathway in ischemic heart disease model in diabetic rats. PloS one. 2014;9(11):e111212. Epub 2014/11/05. doi: 10.1371/journal.pone.0111212 25369053; PubMed Central PMCID: PMC4219710.

28. Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics. 2008;9(1):40.

29. Consortium U. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2016;45(D1):D158–D69. doi: 10.1093/nar/gkw1099 27899622

30. De Vries SJ, Van Dijk M, Bonvin AM. The HADDOCK web server for data-driven biomolecular docking. Nat Protoc. 2010;5(5):883–97. doi: 10.1038/nprot.2010.32 20431534

31. Carpenter B, Hemsworth GR, Wu Z, Maamra M, Strasburger CJ, Ross RJ, et al. Structure of the human obesity receptor leptin-binding domain reveals the mechanism of leptin antagonism by a monoclonal antibody. Structure. 2012;20(3):487–97. Epub 2012/03/13. doi: 10.1016/j.str.2012.01.019 22405007.

32. Tutone M, Pantano L, Lauria A, Almerico AM. Molecular dynamics, dynamic site mapping, and highthroughput virtual screening on leptin and the Ob receptor as anti-obesity target. Journal of molecular modeling. 2014;20(5):2247. Epub 2014/05/07. doi: 10.1007/s00894-014-2247-z 24797089.

33. Jain AN. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem. 2003;46(4):499–511. doi: 10.1021/jm020406h 12570372

34. Clark M, Cramer RD, Van Opdenbosch N. Validation of the general purpose Tripos 5.2 force field. J Comput Chem. 1989;10(8):982–1012.

35. Jain AN. Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput Aided Mol Des. 2007;21(5):281–306. doi: 10.1007/s10822-007-9114-2 17387436

36. Matthey T, Cickovski T, Hampton S, Ko A, Ma Q, Nyerges M, et al. ProtoMol, an object-oriented framework for prototyping novel algorithms for molecular dynamics. ACM Trans Math Softw. 2004;30(3):237–65.

37. Case D, Betz R, Botello-Smith W, Cerutti D III, Duke R, Giese T, et al. AMBER 16. 2016. San Francisco, CA: University of California.

38. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple potential functions for simulating liquid water. J Chem Phys. 1983;79(2):926–35.

39. Chohan TA, Chen J-J, Qian H-Y, Pan Y-L, Chen J-Z. Molecular modeling studies to characterize N-phenylpyrimidin-2-amine selectivity for CDK2 and CDK4 through 3D-QSAR and molecular dynamics simulations. Mol Biosyst. 2016;12(4):1250–68. doi: 10.1039/c5mb00860c 26883408

40. Rehman K, Chohan TA, Waheed I, Gilani Z, Akash MSH. Taxifolin prevents postprandial hyperglycemia by regulating the activity of α‐amylase: Evidence from an in vivo and in silico studies. J Cell Biochem. 2019;120(1):425–38. doi: 10.1002/jcb.27398 30191607

41. Fogolari F, Brigo A, Molinari H. Protocol for MM/PBSA molecular dynamics simulations of proteins. Biophys J. 2003;85(1):159–66. doi: 10.1016/S0006-3495(03)74462-2 12829472

42. Zhang F, Basinski MB, Beals JM, Briggs SL, Churgay LM, Clawson DK, et al. Crystal structure of the obese protein Ieptin-E100. Nature. 1997;387(6629):206–9. doi: 10.1038/387206a0 9144295

43. Bradley RL, Cheatham B. Regulation of ob gene expression and leptin secretion by insulin and dexamethasone in rat adipocytes. Diabetes. 1999;48(2):272–8. Epub 1999/05/20. doi: 10.2337/diabetes.48.2.272 10334301.

44. Banks WA, Farr SA, Morley JE. The effects of high fat diets on the blood-brain barrier transport of leptin: failure or adaptation? Physiology & behavior. 2006;88(3):244–8. Epub 2006/06/20. doi: 10.1016/j.physbeh.2006.05.037 16781741.

45. Rehman K, Akash MSH, Alina Z. Leptin: A new therapeutic target for treatment of diabetes mellitus. J Cell Biochem. 2018;119(7):5016–27. Epub 2017/12/14. doi: 10.1002/jcb.26580 29236298.

46. Annamalai S, Mohanam L, Alwin D, Prabhu V. Effect of combination therapy of melatonin and orlistat on high fat diet induced changes in lipid profiles and liver function parameters in serum of rats. Obesity Medicine. 2016;2:41–5. https://doi.org/10.1016/j.obmed.2016.05.003.

47. Peng H, Wei Z, Luo H, Yang Y, Wu Z, Gan L, et al. Inhibition of Fat Accumulation by Hesperidin in Caenorhabditis elegans. Journal of agricultural and food chemistry. 2016;64(25):5207–14. Epub 2016/06/09. doi: 10.1021/acs.jafc.6b02183 27267939.

48. Rehman K, Akash MSH. Mechanisms of inflammatory responses and development of insulin resistance: how are they interlinked? Journal of biomedical science. 2016;23(1):87. Epub 2016/12/04. doi: 10.1186/s12929-016-0303-y 27912756; PubMed Central PMCID: PMC5135788.

49. Akash MSH, Rehman K, Liaqat A. Tumor Necrosis Factor-Alpha: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. J Cell Biochem. 2018;119(1):105–10. Epub 2017/06/02. doi: 10.1002/jcb.26174 28569437.

50. Akash MSH, Rehman K, Sun H, Chen S. Interleukin-1 receptor antagonist improves normoglycemia and insulin sensitivity in diabetic Goto-Kakizaki-rats. European journal of pharmacology. 2013;701(1–3):87–95. Epub 2013/01/26. doi: 10.1016/j.ejphar.2013.01.008 23348707.

51. Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem. 2013;114(3):525–31. Epub 2012/09/20. doi: 10.1002/jcb.24402 22991242.

52. Sikaris KA. The clinical biochemistry of obesity. Clin Biochem Rev. 2004;25(3):165–81. 18458706.

53. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology (Baltimore, Md). 2018;67(1):328–57. Epub 2017/07/18. doi: 10.1002/hep.29367 28714183.

54. Rehman K, Saeed K, Munawar SM, Akash MSH. Resveratrol regulates hyperglycemia-induced modulations in experimental diabetic animal model. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018;102:140–6. Epub 2018/03/20. doi: 10.1016/j.biopha.2018.03.050 29550637.

55. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nature reviews Immunology. 2011;11(2):98–107. Epub 2011/01/15. doi: 10.1038/nri2925 21233852.

56. Akash MSH, Rehman K, Chen S. An overview of valuable scientific models for diabetes mellitus. Current diabetes reviews. 2013;9(4):286–93. Epub 2013/04/20. doi: 10.2174/15733998113099990062 23597390.

57. Akash MSH, Rehman K, Liaqat A, Numan M, Mahmood Q, Kamal S. Biochemical investigation of gender-specific association between insulin resistance and inflammatory biomarkers in types 2 diabetic patients. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018;106:285–91. Epub 2018/07/04. doi: 10.1016/j.biopha.2018.06.044 29966972.

58. Rehman K, Akash MSH. Mechanism of Generation of Oxidative Stress and Pathophysiology of Type 2 Diabetes Mellitus: How Are They Interlinked? J Cell Biochem. 2017;118(11):3577–85. Epub 2017/05/02. doi: 10.1002/jcb.26097 28460155.

59. Rehman K, Akash MSH, Liaqat A, Kamal S, Qadir MI, Rasul A. Role of Interleukin-6 in Development of Insulin Resistance and Type 2 Diabetes Mellitus. Critical reviews in eukaryotic gene expression. 2017;27(3):229–36. Epub 2017/12/05. doi: 10.1615/CritRevEukaryotGeneExpr.2017019712 29199608.

60. Vinayagam R, Xu B. Antidiabetic properties of dietary flavonoids: a cellular mechanism review. Nutr Metab. 2015;12:60. Epub 2015/12/26. doi: 10.1186/s12986-015-0057-7 26705405; PubMed Central PMCID: PMC4690284.

61. Serra MI. Polyphenol effects on central leptin sensitivity in obesity: Universitat Rovira i Virgili; 2017.

62. Apydin FG, Kaltalioglu K, Balabanli B, Coskun-Cevher S. Morin and hesperidin ameliorate cisplatin-induced hepatotoxicity and nephrotoxicity in rats: A histopathological study. Gazi Univ J Sci. 2018;31(2): 399–406.

63. Turk E, Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Kuzu M. Protective effect of hesperidin on sodium arsenite-induced nephrotoxicity and hepatotoxicity in rats. Biological trace element research. 2018;189(1):95–108. Epub 2018/08/02. doi: 10.1007/s12011-018-1443-6 30066062.

64. Chang B, Xu MJ, Zhou Z, Cai Y, Li M, Wang W, et al. Short- or long-term high-fat diet feeding plus acute ethanol binge synergistically induce acute liver injury in mice: an important role for CXCL1. Hepatology (Baltimore, Md). 2015;62(4):1070–85. Epub 2015/06/03. doi: 10.1002/hep.27921 26033752; PubMed Central PMCID: PMC4589443.

65. Navarro VJ, Khan I, Bjornsson E, Seeff LB, Serrano J, Hoofnagle JH. Liver injury from herbal and dietary supplements. Hepatology (Baltimore, Md). 2017;65(1):363–73. Epub 2016/09/30. doi: 10.1002/hep.28813 27677775; PubMed Central PMCID: PMC5502701.

66. Rouse R, Zhang L, Shea K, Zhou H, Xu L, Stewart S, et al. Extended exenatide administration enhances lipid metabolism and exacerbates pancreatic injury in mice on a high fat, high carbohydrate diet. PloS one. 2014;9(10):e109477. doi: 10.1371/journal.pone.0109477 25291183.

67. Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C. Interaction between flavonoids and the blood-brain barrier: in vitro studies. Journal of neurochemistry. 2003;85(1):180–92. Epub 2003/03/19. doi: 10.1046/j.1471-4159.2003.01652.x 12641740.

68. Hukshorn CJ, Saris WH. Leptin and energy expenditure. Current opinion in clinical nutrition and metabolic care. 2004;7(6):629–33. Epub 2004/11/10. doi: 10.1097/00075197-200411000-00007 15534430.

Článek vyšel v časopise


2020 Číslo 1
Nejčtenější tento týden