Still standing: Recent patterns of post-fire conifer refugia in ponderosa pine-dominated forests of the Colorado Front Range


Autoři: Teresa B. Chapman aff001;  Tania Schoennagel aff002;  Thomas T. Veblen aff002;  Kyle C. Rodman aff002
Působiště autorů: The Nature Conservancy, Boulder, Colorado, United States of America aff001;  Department of Geography, University of Colorado Boulder, Boulder, Colorado, United States of America aff002;  Institute of Arctic and Alpine Research (INSTAAR), University of Colorado Boulder, Boulder, Colorado, United States of America aff003
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0226926

Souhrn

Forested fire refugia (trees that survive fires) are important disturbance legacies that provide seed sources for post-fire regeneration. Conifer regeneration has been limited following some recent western fires, particularly in ponderosa pine (Pinus ponderosa) forests. However, the extent, characteristics, and predictability of ponderosa pine fire refugia are largely unknown. Within 23 fires in ponderosa pine-dominated forests of the Colorado Front Range (1996–2013), we evaluated the spatial characteristics and predictability of refugia: first using Monitoring Trends in Burn Severity (MTBS) burn severity metrics, then using landscape variables (topography, weather, anthropogenic factors, and pre-fire forest cover). Using 1-m resolution aerial imagery, we created a binary variable of post-fire conifer presence (‘Conifer Refugia’) and absence (‘Conifer Absence’) within 30-m grid cells. We found that maximum patch size of Conifer Absence was positively correlated with fire size, and 38% of the burned area was ≥ 50m from a conifer seed source, revealing a management challenge as fire sizes increase with warming further limiting conifer recovery. In predicting Conifer Refugia with two MTBS-produced databases, thematic burn severity classes (TBSC) and continuous Relative differenced Normalized Burn Ratio (RdNBR) values, Conifer Absence was high in previously forested areas of Low and Moderate burn severity classes in TBSC. RdNBR more accurately identified post-fire conifer survivorship. In predicting Conifer Refugia with landscape variables, Conifer Refugia were less likely during burn days with high maximum temperatures: while Conifer Refugia were more likely on moister soils and closer to higher order streams, homes, and roads; and on less rugged, valley topography. Importantly, pre-fire forest canopy cover was not strongly associated with Conifer Refugia. This study further informs forest management by mapping post-fire patches lacking conifer seed sources, validating the use of RdNBR for fire refugia, and detecting abiotic and topographic variables that may promote conifer refugia.

Klíčová slova:

Conifers – Fire suppression technology – Forests – Fuels – Mycobacterium tuberculosis – Pines – Trees – Wildfires


Zdroje

1. Dennison PE, Brewer SC, Arnold JD, Moritz MA. Large wildfire trends in the western United States, 1984–2011. Geophys Res Lett. 2014;41: 2014GL059576. doi: 10.1002/2014GL059576

2. Abatzoglou JT, Williams AP. Impact of anthropogenic climate change on wildfire across western US forests. Proc Natl Acad Sci. 2016;113: 11770–11775. doi: 10.1073/pnas.1607171113 27791053

3. Barbero R, Abatzoglou JT, Larkin NK, Kolden CA, Stocks B. Climate change presents increased potential for very large fires in the contiguous United States. Int J Wildland Fire. 2015;24: 892–899. doi: 10.1071/WF15083

4. Keyser AR, Westerling AL. Predicting increasing high severity area burned for three forested regions in the western United States using extreme value theory. For Ecol Manag. 2019;432: 694–706. doi: 10.1016/j.foreco.2018.09.027

5. Cansler CA, McKenzie D. Climate, fire size, and biophysical setting control fire severity and spatial pattern in the northern Cascade Range, USA. Ecol Appl. 2014;24: 1037–1056. doi: 10.1890/13-1077.1 25154095

6. Sherriff RL, Platt RV, Veblen TT, Schoennagel TL, Gartner MH. Historical, Observed, and Modeled Wildfire Severity in Montane Forests of the Colorado Front Range. PLOS ONE. 2014;9: e106971. doi: 10.1371/journal.pone.0106971 25251103

7. Odion DC, Hanson CT, Arsenault A, Baker WL, DellaSala DA, Hutto RL, et al. Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America. PLOS ONE. 2014;9: e87852. doi: 10.1371/journal.pone.0087852 24498383

8. Brown PM, Wu R. Climate and disturbance forcing of episodic tree recruitment in a southwestern ponderosa pine landscape. Ecology. 2005;86: 3030–3038. doi: 10.1890/05-0034

9. Veblen TT, Kitzberger T, Donnegan J. Climatic and Human Influences on Fire Regimes in Ponderosa Pine Forests in the Colorado Front Range. Ecol Appl. 2000;10: 1178–1195. doi: 10.1890/1051-0761(2000)010[1178:CAHIOF]2.0.CO;2

10. Battaglia MA, Gannon B, Brown PM, Fornwalt PJ, Cheng AS, Huckaby LS. Changes in forest structure since 1860 in ponderosa pine dominated forests in the Colorado and Wyoming Front Range, USA. For Ecol Manag. 2018;422: 147–160. doi: 10.1016/j.foreco.2018.04.010

11. Brown PM, Battaglia MA, Fornwalt PJ, Gannon B, Huckaby LS, Julian C, et al. Historical (1860) forest structure in ponderosa pine forests of the northern Front Range, Colorado. Can J For Res. 2015;45: 1462–1473. doi: 10.1139/cjfr-2014-0387

12. Stevens-Rumann CS, Kemp KB, Higuera PE, Harvey BJ, Rother MT, Donato DC, et al. Evidence for declining forest resilience to wildfires under climate change. Ecol Lett. 2017; n/a-n/a. doi: 10.1111/ele.12889 29230936

13. Kemp KB, Higuera PE, Morgan P, Abatzoglou JT. Climate will increasingly determine post-fire tree regeneration success in low-elevation forests, Northern Rockies, USA. Ecosphere. 2019;10: e02568. doi: 10.1002/ecs2.2568

14. Davis KT, Dobrowski SZ, Higuera PE, Holden ZA, Veblen TT, Rother MT, et al. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc Natl Acad Sci. 2019; 201815107. doi: 10.1073/pnas.1815107116 30858310

15. Stephens SL, Agee JK, Fulé PZ, North MP, Romme WH, Swetnam TW, et al. Managing Forests and Fire in Changing Climates. Science. 2013;342: 41–42. doi: 10.1126/science.1240294 24092714

16. Scheffer M, Carpenter SR, Dakos V, Nes EH van. Generic Indicators of Ecological Resilience: Inferring the Chance of a Critical Transition. Annu Rev Ecol Evol Syst. 2015;46: 145–167. doi: 10.1146/annurev-ecolsys-112414-054242

17. Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, et al. Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ. 2016;14: 369–378. doi: 10.1002/fee.1311

18. Tepley AJ, Thomann E, Veblen TT, Perry GLW, Holz A, Paritsis J, et al. Influences of fire–vegetation feedbacks and post-fire recovery rates on forest landscape vulnerability to altered fire regimes. J Ecol. 2018;106: 1925–1940. doi: 10.1111/1365-2745.12950

19. Meddens AJH, Kolden CA, Lutz JA, Smith AMS, Cansler CA, Abatzoglou JT, et al. Fire Refugia: What Are They, and Why Do They Matter for Global Change? BioScience. 2018 [cited 9 Oct 2018]. doi: 10.1093/biosci/biy103

20. DeRose RJ, Long JN. Resistance and Resilience: A Conceptual Framework for Silviculture. For Sci. 2014;60: 1205–1212. doi: 10.5849/forsci.13-507

21. Bonnet VH, Schoettle AW, Shepperd WD. Postfire environmental conditions influence the spatial pattern of regeneration for Pinus ponderosa. Can J For Res. 2005;35: 37–47. doi: 10.1139/x04-157

22. Chambers ME, Fornwalt PJ, Malone SL, Battaglia MA. Patterns of conifer regeneration following high severity wildfire in ponderosa pine–dominated forests of the Colorado Front Range. For Ecol Manag. 2016;378: 57–67. doi: 10.1016/j.foreco.2016.07.001

23. Kemp KB, Higuera PE, Morgan P. Fire legacies impact conifer regeneration across environmental gradients in the U.S. northern Rockies. Landsc Ecol. 2016;31: 619–636. doi: 10.1007/s10980-015-0268-3

24. Rother MT, Veblen TT. Limited conifer regeneration following wildfires in dry ponderosa pine forests of the Colorado Front Range. Ecosphere. 2016;7: n/a-n/a. doi: 10.1002/ecs2.1594

25. Ziegler JP, Hoffman CM, Fornwalt PJ, Sieg CH, Battaglia MA, Chambers ME, et al. Tree Regeneration Spatial Patterns in Ponderosa Pine Forests Following Stand-Replacing Fire: Influence of Topography and Neighbors. Forests. 2017;8: 391. doi: 10.3390/f8100391

26. Haffey C, Sisk TD, Allen CD, Andrea ET, Margolis EQ. Limits to Ponderosa Pine Regeneration Following Large High-Severity Forest Fires in the United States Southwest. Fire Ecol. 2018;14: 143–163.

27. Haire SL, McGarigal K. Effects of landscape patterns of fire severity on regenerating ponderosa pine forests in New Mexico and Arizona, USA. Landsc Ecol. 2010;25: 1055–1069. doi: 10.1007/s10980-010-9480-3

28. Rodman KC, Veblen TT, Chapman TB, Rother MT, Wion AP, Redmond MD. Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA. Ecol Appl. 2019;0: e02001. doi: 10.1002/eap.2001 31518473

29. Wilkin KM, Ackerly DD, Stephens SL. Climate Change Refugia, Fire Ecology and Management. Forests. 2016;7: 77. doi: 10.3390/f7040077

30. Krawchuk MA, Haire SL, Coop J, Parisien M-A, Whitman E, Chong G, et al. Topographic and fire weather controls of fire refugia in forested ecosystems of northwestern North America. Ecosphere. 2016;7: e01632. doi: 10.1002/ecs2.1632

31. Collins L, Bennett AF, Leonard SWJ, Penman TD. Wildfire refugia in forests: Severe fire weather and drought mute the influence of topography and fuel age. Glob Change Biol. 2019;25: 3829–3843. doi: 10.1111/gcb.14735 31215102

32. Abella SR, Denton CW. Spatial variation in reference conditions: historical tree density and pattern on a Pinus ponderosa landscape. Can J For Res. 2009;39: 2391–2403. doi: 10.1139/X09-146

33. Addington RN, Aplet GH, Battaglia MA, Briggs JS, Brown PM, Cheng AS, et al. Principles and practices for the restoration of ponderosa pine and dry mixed-conifer forests of the Colorado Front Range. Fort Collins, CO: Department of Agriculture, Forest Service, Rocky Mountain Research Station; 2018. Report No.: RMRS-GTR-373.

34. Meddens AJH, Kolden CA, Lutz JA, Abatzoglou JT, Hudak AT. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere. 2018;9: n/a-n/a. doi: 10.1002/ecs2.2029

35. Eidenshink J, Schwind B, Brewer K, Zhu Z, Quayle B, Howard S. A project for monitoring trends in burn severity. Fire Ecology 3 (1): 3–21. Fire Ecol Spec Issue Vol. 2007;3: 4.

36. Miller JD, Thode AE. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens Environ. 2007;109: 66–80. doi: 10.1016/j.rse.2006.12.006

37. MTBS. 2019 [cited 31 Jan 2019]. Available: https://www.mtbs.gov/

38. Radeloff VC, Hammer RB, Stewart SI, Fried JS, Holcomb SS, McKeefry JF. The Wildland–Urban Interface in the United States. Ecol Appl. 2005;15: 799–805. doi: 10.1890/04-1413

39. Graham R, Finney M, McHugh C, Cohen J, Calkin D, Stratton R, et al. Fourmile Canyon Fire Findings. Gen Tech Rep RMRS-GTR-289 Fort Collins CO US Dep Agric For Serv Rocky Mt Res Stn 110 P. 2012;289. doi: 10.2737/RMRS-GTR-289

40. Littell JS, McKenzie D, Peterson DL, Westerling AL. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol Appl. 2009;19: 1003–1021. doi: 10.1890/07-1183.1 19544740

41. Marr JW. Ecosystems of the east slope of the Front Range in Colorado. Univ Colo Ser Biol. 1961;8: 134.

42. PRISM Climate Group, Oregon State U. 2019 [cited 3 Feb 2019]. Available: http://prism.oregonstate.edu/

43. McGuire CR, Nufio CR, Bowers MD, Guralnick RP. Elevation-Dependent Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-Year Record. PLOS ONE. 2012;7: e44370. doi: 10.1371/journal.pone.0044370 22970205

44. NOAA National Centers for Environmental information, Climate at a Glance | National Centers for Environmental Information. Jun 2019 [cited 29 Jun 2018]. Available: https://www.ncdc.noaa.gov/cag/

45. Peet RK. Forest vegetation of the Colorado Front Range—Composition and dynamics. Vegetatio. 1981;45: 3–75. doi: 10.1007/BF00240202

46. Kaufmann MR, Veblen TT, Romme WH. Historical fire regimes in Ponderosa pin forests of the Colorado Front Range, and recommendations for ecological restoration and fuels management. Colorado Forest Restoratin Institute, Colorado State University; 2006.

47. Kaufmann MR, Huisjen DW, Kitchen S, Babler M, Abella SR, Gardiner TS, et al. Gambel oak ecology and management in the southern rockies: the status of our knowledge. SRFSN Publ 2016–1 Fort Collins CO Colo State Univ South Rock Fire Sci Netw 16 P. 2016. Available: https://tnc.app.box.com/file/375110057177

48. Stevens-Rumann CS, Morgan P. Tree regeneration following wildfires in the western US: a review. Fire Ecol. 2019;15: 15. doi: 10.1186/s42408-019-0032-1

49. Porter AAB. The Role of Wildfire and Topography in Shaping Aspen Regeneration after the Hayman Fire, CO, USA. In partial fulfillment of the requirements For the Degree of Master of Science, Colorado State University. 2019. Available: https://tnc.app.box.com/file/497655228770

50. Owen SM, Sieg CH, Sánchez Meador AJ, Fulé PZ, Iniguez JM, Baggett LS, et al. Spatial patterns of ponderosa pine regeneration in high-severity burn patches. For Ecol Manag. 2017;405: 134–149. doi: 10.1016/j.foreco.2017.09.005

51. Coop JD, DeLory TJ, Downing WM, Haire SL, Krawchuk MA, Miller C, et al. Contributions of fire refugia to resilient ponderosa pine and dry mixed-conifer forest landscapes. Ecosphere. 2019;10: e02809. doi: 10.1002/ecs2.2809

52. Korb JE, Fornwalt PJ, Stevens-Rumann CS. What drives ponderosa pine regeneration following wildfire in the western United States? For Ecol Manag. 2019;454: 117663. doi: 10.1016/j.foreco.2019.117663

53. Donnegan JA, Veblen TT, Sibold JS. Climatic and human influences on fire history in Pike National Forest, central Colorado. Can J For Res. 2001;31: 1526–1539. doi: 10.1139/x01-093

54. Sherriff RL, Veblen TT. A Spatially-Explicit Reconstruction of Historical Fire Occurrence in the Ponderosa Pine Zone of the Colorado Front Range. Ecosystems. 2007;10: 311–323. doi: 10.1007/s10021-007-9022-2

55. Schoennagel T, Sherriff RL, Veblen TT. Fire history and tree recruitment in the Colorado Front Range upper montane zone: implications for forest restoration. Ecol Appl. 2011;21: 2210–2222. doi: 10.1890/10-1222.1 21939055

56. Romme WH, Veblen TT, Kaufmann MR, Sherriff R, Regan CM. Ecological effects of the Hayman Fire—Part 1: Historical (pre-1860) and current (1860–2002) fire regimes. Graham Russell T Tech Ed Hayman Fire Case Study Gen Tech Rep RMRS-GTR-114 Ogden UT US Dep Agric For Serv Rocky Mt Res Stn P 181–195. 2003;114. Available: https://tnc.app.box.com/file/375060748345

57. Veblen TT, Donnegan JA. Historical range of variability for forest vegetation of the national forests of the Colorado Front Range. USDA Forest Service, Rocky Mountain Region; 2005. Available: https://tnc.app.box.com/file/274239158739

58. Rodman KC, Veblen TT, Saraceni S, Chapman TB. Wildfire activity and land use drove 20th-century changes in forest cover in the Colorado front range. Ecosphere. 2019;10: e02594. doi: 10.1002/ecs2.2594

59. Sherriff RL, Veblen TT. Ecological effects of changes in fire regimes in Pinus ponderosa ecosystems in the Colorado Front Range. J Veg Sci. 2006;17: 705–718. doi: 10.1658/1100-9233(2006)17[705:EEOCIF]2.0.CO;2

60. GeoMAC Wildfire Application. [cited 31 Jan 2019]. Available: https://www.geomac.gov/index.shtml

61. Roy DP, Boschetti L, Justice CO, Ju J. The collection 5 MODIS burned area product—Global evaluation by comparison with the MODIS active fire product. Remote Sens Environ. 2008;112: 3690–3707. doi: 10.1016/j.rse.2008.05.013

62. Disasters | FEMA.gov. [cited 19 Jul 2019]. Available: https://www.fema.gov/disasters

63. Caggiano MD, Tinkham WT, Hoffman C, Cheng AS, Hawbaker TJ. High resolution mapping of development in the wildland-urban interface using object based image extraction. Heliyon. 2016;2: e00174. doi: 10.1016/j.heliyon.2016.e00174 27752649

64. Caggiano MD. Front Range Round Table 2016 Interagency Fuel Treatment Database. Colorado Forest Restoration Institute, Fort Collins, Colorado, USA; 2017. Available: https://tnc.box.com/s/jbai8o7jdc5sq98kucmk8mprhpv9usaf

65. Donchyts G, Winsemius H, Schellekens J, Erickson T, Gao H, Savenije H, et al. Global 30m Height Above the Nearest Drainage. 2016. doi: 10.13140/RG.2.1.3956.8880

66. McCune B, Keon D. Equations for potential annual direct incident radiation and heat load. J Veg Sci. 2002;13: 603–606. doi: 10.1111/j.1654-1103.2002.tb02087.x

67. Theobald DM, Harrison-Atlas D, Monahan WB, Albano CM. Ecologically-Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation Planning. PLOS ONE. 2015;10: e0143619. doi: 10.1371/journal.pone.0143619 26641818

68. Chaney NW, Wood EF, McBratney AB, Hempel JW, Nauman TW, Brungard CW, et al. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States. Geoderma. 2016;274: 54–67. doi: 10.1016/j.geoderma.2016.03.025

69. Team RC. R: A language and environment for statistical computing. 2013.

70. Therneau T, Atkinson B, Ripley B, Ripley MB. Package ‘rpart.’ Available Online Cran Ma Ic Ac Ukwebpackagesrpartrpart Pdf Accessed 20 April 2016. 2018.

71. De’ath G, Fabricius KE. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology. 2000;81: 3178–3192. doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2

72. Breiman L. Random Forests. Mach Learn. 2001;45: 5–32. doi: 10.1023/A:1010933404324

73. Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2: 18–22.

74. Evans JS, Murphy MA. rfUtilities: Random Forests Model Selection and Performance Evaluation. 2018. Available: https://CRAN.R-project.org/package=rfUtilities

75. Malone SL, Fornwalt PJ, Battaglia MA, Chambers ME, Iniguez JM, Sieg CH. Mixed-Severity Fire Fosters Heterogeneous Spatial Patterns of Conifer Regeneration in a Dry Conifer Forest. Forests. 2018;9: 45. doi: 10.3390/f9010045

76. Baker WL, Williams MA. Bet-hedging dry-forest resilience to climate-change threats in the western USA based on historical forest structure. Front Ecol Evol. 2015;2. doi: 10.3389/fevo.2014.00088

77. Chambers ME, Fornwalt PJ, Malone SL, Battaglia MA. Patterns of conifer regeneration following high severity wildfire in ponderosa pine–dominated forests of the Colorado Front Range. For Ecol Manag. 2016;378: 57–67. doi: 10.1016/j.foreco.2016.07.001

78. Dillon GK, Holden ZA, Morgan P, Crimmins MA, Heyerdahl EK, Luce CH. Both topography and climate affected forest and woodland burn severity in two regions of the western US, 1984 to 2006. Ecosphere. 2011;2: art130. doi: 10.1890/ES11-00271.1

79. Picotte JJ, Peterson B, Meier G, Howard SM. 1984–2010 trends in fire burn severity and area for the conterminous US. Int J Wildland Fire. 2016;25: 413–420. doi: 10.1071/WF15039

80. Wall SBV. On the Relative Contributions of Wind Vs. Animals to Seed Dispersal of Four Sierra Nevada Pines. Ecology. 2008;89: 1837–1849. doi: 10.1890/07-0409.1 18705371

81. Keeley JE. Fire intensity, fire severity and burn severity: a brief review and suggested usage. Int J Wildland Fire. 2009;18: 116–126. doi: 10.1071/WF07049

82. Birch DS, Morgan P, Kolden CA, Abatzoglou JT, Dillon GK, Hudak AT, et al. Vegetation, topography and daily weather influenced burn severity in central Idaho and western Montana forests. Ecosphere. 2015;6: art17. doi: 10.1890/ES14-00365.1 25844268

83. Kolden CA, Smith AM, Abatzoglou JT. Limitations and utilisation of Monitoring Trends in Burn Severity products for assessing wildfire severity in the USA. Int J Wildland Fire. 2015 [cited 4 Nov 2015]. Available: https://tnc.app.box.com/files/0/f/4052629735/1/f_42582911353

84. Walker RB, Coop JD, Downing WM, Krawchuk MA, Malone SL, Meigs GW. How Much Forest Persists Through Fire? High-Resolution Mapping of Tree Cover to Characterize the Abundance and Spatial Pattern of Fire Refugia Across Mosaics of Burn Severity. Forests. 2019;10: 782. doi: 10.3390/f10090782

85. Schoennagel T, Veblen TT, Romme WH. The Interaction of Fire, Fuels, and Climate across Rocky Mountain Forests. BioScience. 2004;54: 661–676. doi: 10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2

86. Abatzoglou JT, Kolden CA, Williams AP, Lutz JA, Smith AMS. Climatic influences on interannual variability in regional burn severity across western US forests. Int J Wildland Fire. 2017;26: 269–275. doi: 10.1071/WF16165

87. Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science. 2006;313: 940–943. doi: 10.1126/science.1128834 16825536

88. Lukas J, Barsugli J, Doesken N, Rangwala I, Wolter K. Climate Change in Colorado: A Synthesis to Support Water Resources Management and Adaptation. A Report for the Colorado Water Conservation Board. Western Water Assessment; 2014. Available: https://tnc.box.com/s/gvjr3klx7s1jfnj8n5zw0430yl8t1vju

89. Whitman E, Parisien M-A, Thompson DK, Hall RJ, Skakun RS, Flannigan MD. Variability and drivers of burn severity in the northwestern Canadian boreal forest. Ecosphere. 2018;9: e02128. doi: 10.1002/ecs2.2128

90. Camp A, Oliver C, Hessburg P, Everett R. Predicting late-successional fire refugia pre-dating European settlement in the Wenatchee Mountains. For Ecol Manag. 1997;95: 63–77. doi: 10.1016/S0378-1127(97)00006-6

91. Dwire KA, Kauffman JB. Fire and riparian ecosystems in landscapes of the western USA. For Ecol Manag. 2003;178: 61–74. doi: 10.1016/S0378-1127(03)00053-7

92. Holsinger L, Parks SA, Miller C. Weather, fuels, and topography impede wildland fire spread in western US landscapes. For Ecol Manag. 2016;380: 59–69. doi: 10.1016/j.foreco.2016.08.035

93. Pettit NE, Naiman RJ. Fire in the Riparian Zone: Characteristics and Ecological Consequences. Ecosystems. 2007;10: 673–687. doi: 10.1007/s10021-007-9048-5

94. Abella SR, Denton CW, Steinke RW, Brewer DG. Soil development in vegetation patches of Pinus ponderosa forests: Interface with restoration thinning and carbon storage. For Ecol Manag. 2013;310: 632–642. doi: 10.1016/j.foreco.2013.09.022

95. Puhlick JJ, Laughlin DC, Moore MM. Factors influencing ponderosa pine regeneration in the southwestern USA. For Ecol Manag. 2012;264: 10–19. doi: 10.1016/j.foreco.2011.10.002

96. Keith RP, Veblen TT, Schoennagel TL, Sherriff RL. Understory vegetation indicates historic fire regimes in ponderosa pine-dominated ecosystems in the Colorado Front Range. J Veg Sci. 2010;21: 488–499. doi: 10.1111/j.1654-1103.2009.01156.x

97. Calkin DE, Cohen JD, Finney MA, Thompson MP. How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc Natl Acad Sci. 2014;111: 746–751. doi: 10.1073/pnas.1315088111 24344292

98. Kennedy MC, Johnson MC. Fuel treatment prescriptions alter spatial patterns of fire severity around the wildland–urban interface during the Wallow Fire, Arizona, USA. For Ecol Manag. 2014;318: 122–132. doi: 10.1016/j.foreco.2014.01.014

99. Hurteau MD, Liang S, Martin KL, North MP, Koch GW, Hungate BA. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests. Ecol Appl. 2016;26: 382–391. doi: 10.1890/15-0337 27209781

100. McCauley LA, Robles MD, Woolley T, Marshall RM, Kretchun A, Gori DF. Large-scale forest restoration stabilizes carbon under climate change in Southwest United States. Ecol Appl. 2019;0: e01979. doi: 10.1002/eap.1979 31332869

101. Gartner MH, Veblen TT, Sherriff RL, Schoennagel TL. Proximity to grasslands influences fire frequency and sensitivity to climate variability in ponderosa pine forests of the Colorado Front Range. Int J Wildland Fire. 2012;21: 562–571. doi: 10.1071/WF10103

102. Matonis MS, Binkley D. Not just about the trees: Key role of mosaic-meadows in restoration of ponderosa pine ecosystems. For Ecol Manag. 2018;411: 120–131. doi: 10.1016/j.foreco.2018.01.019

103. Lutz JA, Furniss TJ, Johnson DJ, Davies SJ, Allen D, Alonso A, et al. Global importance of large-diameter trees. Glob Ecol Biogeogr. 2018;0. doi: 10.1111/geb.12747

104. Huckaby LS, Kaufmann MR, Stoker JM, Fornwalt PJ. Landscape patterns of montane forest age structure relative to fire history at Cheesman Lake in the Colorado Front Range. Vance Regina K Edminster Carlet B Covington W Wallace Blake Julie Comps Ponderosa Pine Ecosyst Restor Conserv Steps Steward 2000 April 25–27 Flagstaff AZ Proc RMRS-P-22 Ogden UT US Dep Agric For Serv Rocky Mt Res Stn P 19–27. 2001;22: 19–27.

105. Fornwalt PJ, Huckaby LS, Alton SK, Kaufmann MR, Brown PM, Cheng AS. Did the 2002 Hayman Fire, Colorado, USA, burn with uncharacteristic severity? Fire Ecol 123 117–132. 2016;12: 117–132. doi: 10.4996/fireecology.1203117

106. Walker RB, Coop JD, Parks SA, Trader L. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest. Ecosphere. 2018;9: e02182. doi: 10.1002/ecs2.2182

107. Millar CI, Stephenson NL, Stephens SL. Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl. 2007;17: 2145–2151. doi: 10.1890/06-1715.1 18213958

108. Rice JR, Joyce LA, Regan C, Winters D, Truex R. Climate change vulnerability assessment of aquatic and terrestrial ecosystems in the U.S. Forest Service Rocky Mountain Region. Gen Tech Rep RMRS-GTR-376 Fort Collins CO US Dep Agric For Serv Rocky Mt Res Stn 216 P. 2018;376. Available: https://tnc.app.box.com/file/308544327109

109. Halofsky JE, Andrews-Key SA, Edwards JE, Johnston MH, Nelson HW, Peterson DL, et al. Adapting forest management to climate change: The state of science and applications in Canada and the United States. For Ecol Manag. 2018;421: 84–97. doi: 10.1016/j.foreco.2018.02.037


Článek vyšel v časopise

PLOS One


2020 Číslo 1