Reduced bone mineral density among HIV infected patients on anti-retroviral therapy in Blantyre, Malawi: Prevalence and associated factors

Autoři: Enock M. Chisati aff001;  Demitri Constantinou aff003;  Fanuel Lampiao aff004
Působiště autorů: Department of Physiotherapy, College of Medicine, University of Malawi, Blantyre, Malawi aff001;  Consortium for Advanced Research Training in Africa (CARTA), Nairobi, Kenya aff002;  Center for Exercise Science and Sports Medicine, FIMS Collaborating Center of Sports Medicine, University of the Witwatersrand, Johannesburg, South Africa aff003;  Department of Biomedical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi aff004
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: 10.1371/journal.pone.0227893



Use of tenofovir based anti-retroviral therapy (ART) in HIV patients is associated with low bone mineral density (BMD). Low BMD predisposes people living with HIV (PLWHIV) to fractures thereby increasing morbidity and mortality. Since the introduction of tenofovir based ARV regimens in 2011, information on the prevalence of low BMD in PLWHIV and receiving ART is still scarce in Malawi. This study aimed to determine the prevalence and associated factors of low BMD among adults living with HIV and receiving ART in Blantyre, Malawi.


This was a cross sectional study involving 282 HIV-positive adults of whom 102 (36%) were males. The participants aged 18–45 years were recruited from three primary and one tertiary health care facilities. Patients with no other comorbidities or conditions associated with low BMD and on ART >12 months were included. Data on BMD (femoral neck and lumbar spine) were collected using Dual–Energy X-ray Absorptiometry (DEXA). The International Physical Activity Questionnaire (IPAQ) was used to assess the physical activity (PA) levels. Participants’ body weight (kg) and height (m) were also measured. Descriptive statistics, Chi–Square test and multivariable logistic regression were used to analyse data.


Mean age of participants was 37(± 6.4) years, mean duration on ART was 5(± 3.5) years and mean body mass index (BMI) was 23(± 4.5) kg/m2. Twenty percent (55) had reduced BMD. More males (28%) had reduced BMD than females (14%) (p = 0.04). There was a significant association between lumbar BMD and femoral neck BMD (r = 0.66,p<0.001). However, on average, lumbar BMD (g/cm2) was significantly lower than the femoral BMD (p < 0.001). Participants with low PA level (OR 1.23,p = 0.6) had higher odds of having reduced BMD compared to those with high PA level.

Conclusions and recommendation

Prevalence of reduced BMD is high among PLWHIV in Malawi especially male Malawian adults. Occurrence of low BMD is associated with low PA level. There is need for health care providers to routinely monitor BMD and PA levels of this population.

Klíčová slova:

Body weight – Bone density – Bone fracture – Health care facilities – HIV – HIV infections – Malawi – Physical activity


1. Dimai HP. Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases. Bone [Internet]. 2016;1–5. Available from:

2. World Health Organisation. Scientific group on the assessment of osteoporosis at primary health care level. In: Summary Meeting Report. 2004. p. 1–13.

3. Mirembe BG, Kelly CW, Mgodi N, Greenspan S, Dai JY, Mayo A, et al. Bone Mineral Density Changes Among Young, Healthy African Women Receiving Oral Tenofovir for HIV Preexposure Prophylaxis. J Acquir Immune Defic Syndr [Internet]. 2016;71(3):287–94. Available from: doi: 10.1097/QAI.0000000000000858 26866954

4. Dave JA, Cohen K, Micklesfield LK, Maartens G, Levitt NS. Antiretroviral Therapy, Especially Efavirenz, Is Associated with Low Bone Mineral Density in HIV-Infected South Africans. PLoS One [Internet]. 2015;10(12):1–9. Available from:

5. Liu AY, Vittinghoff E, Sellmeyer DE, Irvin R, Mulligan K, Mayer K, et al. Bone mineral density in HIV-negative men participating in a tenofovir pre-exposure prophylaxis randomized clinical trial in San Francisco. PLoS One. 2011;6(8).

6. Purday J, Gafni R, Reynolds J, Zeichner S, Hazra R. Decreased bone mineral density with off—label use of Tenofovir in HIV—Infected children and adolescents. J Paediatr. 2008;152(4):582–4.

7. Güerri‐Fernandez R, Vestergaard P, Carbonell C, Knobel H, Avilés FF, Castro AS, et al. HIV Infection Is Strongly Associated With Hip Fracture Risk, Independently of Age, Gender, and Comorbidities: A Population‐Based Cohort Study. J Bone Miner Res. 2013;28(6):1259–63. doi: 10.1002/jbmr.1874 23362011

8. Kirk GD, Merlo C, Driscoll PO, Mehta SH, Galai N, Vlahov D, et al. HIV Infection Is Associated with an Increased Risk for Lung Cancer, Independent of Smoking. Clin Infect Dis. 2007;45(1):103–10. doi: 10.1086/518606 17554710

9. Schouten J, Wit FW, Stolte IG, Kootstra NA, Van Der Valk M, Geerlings SE, et al. Cross-sectional comparison of the prevalence of age-associated comorbidities and their risk factors between hiv-infected and uninfected individuals: The age H IV cohort study. Clin Infect Dis. 2014;59(12):1787–97. doi: 10.1093/cid/ciu701 25182245

10. Grant PM, Cotter AG. Tenofovir and bone health. Curr Opin HIV AIDS. 2016;11(3):326–32. doi: 10.1097/COH.0000000000000248 26859637

11. Yin MT, Overton ET. Increasing clarity on bone loss associated with antiretroviral initiation. J Infect Dis. 2011;203(12):1705–7. doi: 10.1093/infdis/jir184 21606527

12. Duvivier C, Kolta S, Assoumou L, Ghosn J, Rozenberg S, Murphy RL, et al. Greater decrease in bone mineral density with protease inhibitor regimens compared with nonnucleoside reverse transcriptase inhibitor regimens in HIV-1 infected naive patients. AIDS. 2009;23(7):817–24. doi: 10.1097/QAD.0b013e328328f789 19363330

13. Matovu FK, Wattanachanya L, Beksinsk M, Pettifor JM, Ruxrungtham K. Bone health and HIV in resource-limited settings: a scoping review. Curr Opin HIV AIDS [Internet]. 2016;11(3):306–25. Available from: doi: 10.1097/COH.0000000000000274 27023284

14. Brown TT, Moser C, Currier JS, Ribaudo HJ, Rothenberg J, Kelesidis T, et al. Changes in bone mineral density after initiation of antiretroviral treatment with Tenofovir Disoproxil Fumarate/Emtricitabine Plus Atazanavir/Ritonavir, Darunavir/Ritonavir, or Raltegravir. J Infect Dis. 2015;212(8):1241–9. doi: 10.1093/infdis/jiv194 25948863

15. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, Tebas P, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: AIDS Clinical Trials Group A5224s, a substudy of ACTG. J Infect Dis. 2011;203(12):1791–801. doi: 10.1093/infdis/jir188 21606537

16. World Health Organisation. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection. In: Guidelines. 2013. p. 1–269.

17. World Health Organisation. Consolidated Guidelines on the Use of Antiretroviral Drugs for Treating and Preventing HIV Infection: What ‘ S New. In: Policy Brief. 2015. p. 1–16.

18. Alonge T, Okoje-Adesomoju V, Atalabi O, Obamuyide H, Olaleye D, Adewole I. Prevalence of abnormal bone mineral density in HIV-positive patients in ibadan, Nigeria. J West African Coll Surg. 2013;3(4):1–14.

19. Chitu-Tisu CE, Barbu EC, Lazar M, Ion DA, Badarau IA. Low bone mineral density and associated risk factors in HIV-infected patients. GERMS [Internet]. 2016;6(2):50–9. Available from: doi: 10.11599/germs.2016.1089 27482514

20. Dravid A;, Kulkarni M, Borkar A, Dhande Sachin. Prevalence of low bone mineral density among HIV patients on longterm suppressive antiretroviral therapy in resource limited setting of western India. J Int AIDS Soc. 2014;17(November):17–8.

21. Aydin OA, Karaosmanoglu HK, Karahasanoglu R, Tahmaz M, Nazlican O. Prevalence and risk factors of osteopenia/osteoporosis in Turkish HIV/AIDS patients. Brazilian J Infect Dis [Internet]. 2013;17(6):707–11. Available from:

22. Pinto Neto LFS, Ragi-Eis S, Vieira NFR, Soprani M, Neves MB, Ribeiro-Rodrigues R, et al. Low Bone Mass Prevalence, Therapy Type, and Clinical Risk Factors in an HIV-Infected Brazilian Population. J Clin Densitom. 2011;14(4):434–9. doi: 10.1016/j.jocd.2011.06.004 22051092

23. Cardeal D, Soares LR, Pereira RMR, Rutherford GW, Assone T, Takayama L, et al. Low bone mineral density among HIV infected patients in Brazil. J Sao Paulo Inst Trop Med. 2017;59(e89):1–5.

24. Perazzo JD, Webel AR, Alam SMK, Sattar A, McComsey GA. Relationships Between Physical Activity and Bone Density in People Living with HIV: Results from the SATURN-HIV Study. J Assoc Nurses AIDS Care. 2018;29(4):528–37. doi: 10.1016/j.jana.2018.03.004 29735237

25. Welz T, Childs K, Ibrahim F, Poulton M, Taylor CB, Moniz CF, et al. Efavirenz is associated with severe vitamin D deficiency and increased alkaline phosphatase. AIDS [Internet]. 2010;24(12):1923–8. Available from: doi: 10.1097/QAD.0b013e32833c3281 20588161

26. Bonjoch A, Figueras M, Estany C, Perez-Alvarez N, Rosales J, del Rio L, et al. High prevalence of and progression to low bone mineral density in HIV-infected patients: a longitudinal cohort study. AIDS [Internet]. 2010;24(18):2827–33. Available from: doi: 10.1097/QAD.0b013e328340a28d 21045635

27. UNIAIDS. Global AIDS Monitoring 2018. 2017.

28. Malawi Government. Global AIDS Response Progress Report (GARPR): Malawi Progress Report for 2013. 2014.

29. Bassett DR. International physical activity questionnaire: 12-Country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1396. doi: 10.1249/01.MSS.0000078923.96621.1D 12900695

30. IPAQ Research Committee. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)–Short and Long Forms. Ipaq. 2005.

31. Lessig HJ, Meltzer MS, Siegel JA. The symmetry of hip bone mineral density. A dual photon absorptiometry approach. Clin Nucl Med. 1987;12(10):811–2. doi: 10.1097/00003072-198710000-00013 3677526

32. International Society for Clinical Densitometry. 2013 Official Positions—Adult. 2013.

33. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician ‘ s Guide to Prevention and Treatment of Osteoporosis. Osteoporos Int. 2014;25:2359–81. doi: 10.1007/s00198-014-2794-2 25182228

34. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359(June 1):1929–36.

35. Escota G V., Mondy K, Bush T, Conley L, Brooks JT, Önen N, et al. High Prevalence of Low Bone Mineral Density and Substantial Bone Loss over 4 Years Among HIV-Infected Persons in the Era of Modern Antiretroviral Therapy. AIDS Res Hum Retroviruses [Internet]. 2015;31(1):59–67. Available from:

36. Seeman E, Delmas PD. Bone quality—the material and structural basis of bone strength and fragility. N Engl J Med. 2006;354(21):2250–61. doi: 10.1056/NEJMra053077 16723616

37. Kruger MJ, Nell TA. Bone mineral density in people living with HIV: a narrative review of the literature. AIDS Res Ther [Internet]. 2017;14(35):1–17. Available from:

38. Baxter-Jones ADG, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA. Bone mineral accrual from 8 to 30 years of age: An estimation of peak bone mass. J Bone Miner Res. 2011;26(8):1729–39. doi: 10.1002/jbmr.412 21520276

39. Lang TF. The Bone-Muscle Relationship in Men and Women. J Osteoporos. 2011;2011:1–4.

40. Nieves JW, Formica C, Ruffing J, Zion M, Garrett P, Lindsay R, et al. Males Have Larger Skeletal Size and Bone Mass Than Females, Despite Comparable Body Size. J Bone Miner Res. 2005;20(3):529–35. doi: 10.1359/JBMR.041005 15746999

41. Erlandson KM, Lake JE, Sim M, Falutz J, Prado CM, Domingues R, et al. Bone Mineral Density Declines Twice as Quickly Among HIV-Infected Women Compared With Men. J Acquir Immune Defic Syndr. 2018;77(3):288–94. doi: 10.1097/QAI.0000000000001591 29140875

42. Choe HS, Lee JH, Min DK, Shin SH. Comparison of vertebral and femoral bone mineral density in adult females. J Phys Ther Sci. 2016;28:1928–31. doi: 10.1589/jpts.28.1928 27390449

43. Namwongprom S, Ekmahachai M. Bone Mineral Density: Correlation between the Lumbar Spine, Proximal Femur and Radius in Northern Thai Women. J Med Assoc Thail. 2011;94(6):725–31.

44. Zhang L, Su Y, Hsieh E, Xia W, Xie J, Han Y, et al. Bone turnover and bone mineral density in HIV-1 infected Chinese taking highly active antiretroviral therapy -a prospective observational study. BMC Musculoskelet Disord. 2013;14:224. doi: 10.1186/1471-2474-14-224 23899016

45. Guthold R, Louazani SA, Riley LM, Cowan MJ, Bovet P, Damasceno A, et al. Physical Activity in 22 African Countries: Results from the World Health Organization STEPwise Approach to Chronic Disease Risk Factor Surveillance. Am J Prev Med. 2011;41(1):52–60. doi: 10.1016/j.amepre.2011.03.008 21665063

46. Borderi M, Pierluigi V. How to monitor bone disease in HIV infection. HAART, HIV Correl Pathol other Infect. 2013;182–9.

47. Santos W, Santos W, Paes P, Ferreira-Silva I, Santos A, Vercese N, et al. Impact of Strength Training on Bone Mineral Density in Patients Infected with HIV exhibiting Lipodystrophy. J Strength Cond Res. 2015;29(12):3466–71. doi: 10.1519/JSC.0000000000001001 25970490

Článek vyšel v časopise


2020 Číslo 1