#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Detection and density of breeding marsh birds in Iowa wetlands


Autoři: Rachel A. Vanausdall aff001;  Stephen J. Dinsmore aff001
Působiště autorů: Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA, United States of America aff001
Vyšlo v časopise: PLoS ONE 15(1)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0227825

Souhrn

Accounting for imperfect detection is an important process when obtaining estimates of density or abundance for breeding birds, and this is particularly true when researchers are monitoring birds to assess the success of restored wetlands. Due to the dramatic decline in areal cover and habitat quality, wetland restoration in the Prairie Pothole Region (PPR) is critically important to breeding birds. The Shallow Lakes Restoration Project (SLRP), a partnership between the Iowa Department of Natural Resources and Ducks Unlimited, Inc., aims to restore degraded shallow lakes throughout the Iowa PPR. We conducted unlimited-radius point counts with call-broadcast surveys for breeding marsh birds at 30 shallow lakes in various stages of restoration in 2016 and 2017. Our goals were to assess the impact of covariates on detection probability and estimate density of these species at non-restored, younger (1–5 years since restoration), and older (6–11 years since restoration) restorations. Detection probability ranged between 0.07 ± 0.009 (SE) for Red-winged Blackbird and 0.40 ± 0.09 (SE) for Common Yellowthroat. Percent cattail had a positive quadratic effect on detection probability for four species, with detection decreasing sharply as percent cattail increased and increasing slightly with 100% cattail cover. Wind speed negatively influenced the detection probability of Pied-billed Grebes but had a negative quadratic effect on the detection probability of Marsh Wrens. Both restored shallow lakes had greater densities of breeding Pied-billed Grebes, Marsh Wrens, and Yellow-headed Blackbirds than non-restored shallow lakes, but there was no significant difference between younger and older restorations. Including both habitat and environmental covariates on models for detection probability can improve the precision of estimates for density and should be considered when assessing bird populations pre- and post-restoration of shallow lakes.

Klíčová slova:

Birds – Clouds – Lakes – Marshes – Probability density – Wetlands – Wind – Iowa


Zdroje

1. Mackenzie DI, Nichols JD, Lachman GB, Droege S, Andrew J, Langtimm CA. Estimating site occupancy rates when detection probabilities are less than one. Ecology. 2002; 83: 2248–2255.

2. Burnham KP, Anderson DR. Model selection and multimodal inference: A practical information-theoretic approach. 1st ed. New York, New York: Springer-Verlag; 2002.

3. Bas Y, Devictor V, Jean-Pierre M, Jiguet F. Accounting for weather and time-of-day parameters when analysing count data from monitoring programs. 2008; 3403–3416.

4. Gu W, Swihart RK. Absent or undetected? Effects of non-detection of species occurrence on wildlife–habitat models. 2004; 116: 195–203.

5. Burnham KP. Summarizing remarks: environmental influences. In: Studies in Avian Biology. 1981. p. 324–325.

6. Conway CJ. Standardized North American marsh bird monitoring protocols, version 2009–2. Wildlife Research Report #2009–02. U.S. Geological Survey, Arizona Cooperative Fish and Wildlife Research Unit. Tucson, Arizona; 2009.

7. Conway CJ. Standardized North American marsh bird monitoring protocol. Waterbirds. 2011; 34: 319–346.

8. Glisson WJ, Brady RS, Paulios AT, Jacobi SK, Larkin DJ. Sensitivity of secretive marsh birds to vegetation condition in natural and restored wetlands in Wisconsin. J Wildl Manage. 2015; 79: 1101–1116.

9. Sauer AJR, Pardieck KL, Ziolkowski DJ, Smith AC, Hudson R, Sauer JR, et al. The first 50 years of the North American Breeding Bird Survey. Condor. 2017; 119: 576–593.

10. U.S. Fish and Wildlife Service. Birds of Conservation Concern 2008 [Internet]. United States Department of Interior, Fish and Wildlife Service, Division of Migratory Bird Management. Arlington, Virginia; 2008. Available from: http://www.fws.gov/migratorybirds/

11. Chow-Fraser P. Ecosystem response to changes in water level of Lake Ontario marshes: Lessons from the restoration of Cootes Paradise Marsh. Hydrobiologia. 2005; 539: 189–204.

12. Zohrer JJ. Prairie/wetland complex restorations in the Prairie Pothole Region of Iowa. In: Proceedings of the 17th North American Prairie Conference. 2001. p. 136–137.

13. Zedler JB. Progress in wetland restoration ecology. Trends Ecol Evol. 2000; 15: 402–407. doi: 10.1016/s0169-5347(00)01959-5 10998517

14. Anteau MJ, Afton AD. Amphipod densities and indices of wetland quality across the upper-Midwest, USA. Wetlands. 2008; 28: 184–196.

15. Geisthardt E, Gaustch J, Harland B. Shallow lakes summary report. Des Moines, Iowa; 2013. p. 65.

16. Weller MW, Spatcher CS. Role of habitat in the distribution and abundance of marsh birds. Ames, IA; 1965. p. 31.

17. Kantrud HA, Millar JB, van der Valk AG. Vegetation of wetlands of the Prairie Pothole Region. In: van der Valk AG, editor. Northern Prairie Wetlands. Ames, IA: Iowa State University Press; 1989. p. 132–187.

18. van der Valk AG, Davis CB. The seed banks of prairie glacial marshes. Can J Bot. 1976; 54: 1832–1838.

19. Galatowitsch SM, van der Valk AG. The vegetation of restored and natural prairie wetlands. Ecol Appl. 1996; 6: 102–112.

20. Stewart RE, Kantrud HA. Classification of natural ponds and lakes in the glaciated prairie region [Internet]. Resource Publication. Washington D.C.; 1971. Available from: https://pubs.er.usgs.gov/publication/rp92

21. Lor S, Malecki RA. Breeding ecology and nesting habitat associations of five marsh bird species in western New York. Waterbirds. 2006; 29: 427–436.

22. Rehm EM, Baldassarre GA. The influence of interspersion on marsh bird abundance in New York. Wilson J Ornithol. 2007; 119: 648–654.

23. Darrah AJ, Krementz DG. Occupancy and Habitat use of the Least Bittern and Pied-Billed Grebe in the Illinois and Upper Mississippi River Valleys. Waterbirds. 2010; 33: 367–375.

24. Voigts DK. Aquatic invertebrate abundance in relation to changing marsh vegetation. Am Midl Nat. 1976; 95: 313–322.

25. Murkin EJ, Murkin HR, Titman RD. Nektonic invertebrate abundance and distribution at the emergent vegetation-open water interface in the Delta Marsh, Manitoba, Canada. Wetlands. 1992; 12: 45–52.

26. Tiner RWJ. Wetlands of the United States: Current Status and Recent Trends. Natl Wetl Invent. 1984; 1–76.

27. Dahl TE. Status and trends of prairie wetlands in the United States 1997 to 2009. 2014; Available from: https://www.fws.gov/wetlands/Documents/Status-and-Trends-of-Prairie-Wetlands-in-the-United-States-1997-to-2009.pdf

28. McCauley LA, Anteau MJ, Van Der Burg MP, Wiltermuth MT. Land use and wetland drainage affect water levels and dynamics of remaining wetlands. Ecosphere. 2015; 6: 1–22.

29. Martin DB, Hartman WA. The effect of cultivation on sediment composition and deposition in prairie pothole wetlands. Water Air Soil Pollut. 1987; 34: 45–53.

30. Søndergaard M, Jensen JP, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia. 2003; 506–509: 135–145.

31. Gleason RA, Euliss NH. Sedimentation of prairie wetlands. Gt Plains Res. 1998; 8: 97–112.

32. Neely RK, Baker JK. Nitrogen and phosphorous dynamics and the fate of agricultural runoff. In: van der Valk A., editor. Northern Prairie Wetlands. 1st ed. Ames, Iowa: Iowa State University Press; 1989. p. 92–131.

33. Jurik T, Wang S, van der Valk A. Effects of sediment load on seedling emergence from wetland seed banks. Wetlands. 1994; 14: 159–165.

34. Zimmer KD, Hanson MA, Butler MG. Factors influencing invertebrate communities in prairie wetlands: a multivariate approach. Can J Fish Aquat Sci. 2000; 57: 76–85.

35. Gleason RA, Euliss NH, Hubbard DE, Duffy WG. Effects of sediment load on emergence of aquatic invertebrates and plants from wetland soil egg and seed banks. Wetlands. 2003; 23: 26–34.

36. Fox AD, Balsby TJS, Jørgensen HE, Lauridsen TL, Jeppesen E, Søndergaard M, et al. Effects of lake restoration on breeding abundance of globally declining common pochard (Aythya ferina L.). Hydrobiologia. 2018; 830: 33–44.

37. Hanson MA, Butler MG. Responses of plankton, turbidity, and macrophytes to biomanipulation in a shalow prairie lake. Can J Fish Aquat Sci. 1994; 51: 1180–1188.

38. Zimmer KD, Hanson MA, Butler MG. Relationships among nutrients, phytoplankton, macrophytes, and fish in prairie wetlands. Can J Fish Aquat Sci. 2003; 60: 721–730.

39. Søndergaard M, Jeppesen E, Lauridsen TL, Skov C, Van Nes EH, Roijackers R, et al. Lake restoration: Successes, failures and long-term effects. J Appl Ecol. 2007; 44: 1095–1105.

40. Hanson MA, Herwig BR, Zimmer KD, Hansel-Welch N. Rehabilitation of shallow lakes: time to adjust expectations? Hydrobiologia. 2017; 787: 45–59.

41. Hilt S, Alirangues Nuñez MM, Bakker ES, Blindow I, Davidson TA, Gillefalk M, et al. Response of submerged macrophyte communities to external and internal restoration measures in north temperate shallow lakes. Front Plant Sci. 2018; 9.

42. Hanson MA. Responses to food web manipulation: a field test in a shallow waterfowl lake. Hydrobiologia. 1994; 279/280: 457–466.

43. LaGrange TG, Dinsmore JJ. Pland and animal community responses to restored Iowa wetlands. Prairie Nat. 1989; 21: 39–48.

44. VanRees-Siewert KL, Dinsmore JJ. Influence of wetlands age on bird use of restored wetlands in Iowa. Wetlands. 1996; 16: 577–582.

45. Delphey PJ, Dinsmore JJ. Breeding bird communities of recently restored and natural prairie potholes. Wetlands. 1993; 13: 200–206.

46. Brown SC, Smith CR, Press A. Breeding season bird use of recently restored versus natural wetlands in New York. J Wildl Manage. 1998; 62: 1480–1491.

47. Mushet DM, Euliss NH, Shaffer TL. Floristic quality assessment of one natural and three restored wetland complexes in North Dakota, USA. Wetlands. 2002; 22: 126–138.

48. Mulhouse JM, Galatowitsch SM. Revegetation of prairie pothole wetlands in the mid-continental US: Twelve years post-reflooding. Plant Ecol. 2003; 169: 143–159.

49. Seabloom EW, Valk AG. Plant diversity, composition, and invasion of restored and natural prairie pothole wetlands: Implications for restoration. Wetlands. 2003; 23: 1–12.

50. Harms TM, Dinsmore SJ. Density, abundance, and habitat associations of the inland Swamp Sparrow (Melospiza georgiana georgiana) in Iowa. Wilson J Ornithol. 2015; 127: 670–677.

51. Harms TM, Dinsmore SJ. Density and Abundance of Secretive Marsh Birds in Iowa. Waterbirds. 2012; 35: 208–216.

52. Harms TM, Dinsmore SJ. Optimizing surveys for marsh songbirds: does timing matter? 2018; 89: 276–286.

53. Vanausdall RA, Dinsmore SJ. Impacts of shallow lake restoration on vegetation and breeding birds in Iowa. Wetlands. 2018

54. Bishop RA. Iowa’s wetlands. Proc Iowa Acad Sci. 1981; 88: 11–16.

55. Iowa Association of Naturalists. Iowa Wetlands. 2001. p. 24.

56. Cowardin LM, Carter V, Golet FC, LaRoe ET. Classification of wetlands and deepwater habitats of the United States. FGDC-STD-004-2013 Second Ed. 1979; 79. Available from: http://www.charttiff.com/pub/WetlandMaps/Cowardin.pdf

57. Miller BA, Crumpton WG, van der Valk AG. Spatial Distribution of Historical Wetland Classes on the Des Moines Lobe, Iowa. Wetlands. 2009; 29: 1146–1152.

58. Galatowitsch SM, van der Valk AG. Characteristics of recently restore wetlands in the prairie pothole region. Wetlands. 1996; 16: 75–83.

59. Aronson MFJ, Galatowitsch S. Long-term vegetation development of restored prairie pothole wetlands. Wetlands. 2008; 28: 883–895.

60. Badiou P, McDougal R, Pennock D, Clark B. Greenhouse gas emissions and carbon sequestration potential in restored wetlands of the Canadian prairie pothole region. Wetl Ecol Manag. 2011; 19: 237–256.

61. Bortolotti LE, Vinebrooke RD, St. Louis VL. Prairie wetland communities recover at different rates following hydrological restoration. Freshw Biol. 2016; 61: 1874–1890.

62. Ralph CJ, Sauer JR, Droege S. Monitoring bird populations by point counts. Gen. Tech. Rep. PSW-GTR-149. Albany, California; 1995.

63. Harms TM. Population ecology and monitoring of secretive marsh-birds in Iowa. Wildlife Ecology. 2011.

64. Gibbs JP, Melvin SM. Call-response surveys for monitoring breeding waterbirds. J Wildl Manage. 1993; 57: 27–34.

65. Conway CJ, Sulzman C, Raulston BE. Factors affecting detection probability of California Black Rails. J Wildl Manage. 2004; 68: 360–370.

66. Robertson EP, Olsen BJ. Density, sex, and nest stage affect rail broadcast survey results. J Wildl Manage. 2014; 78: 1293–1301.

67. Harms TM, Dinsmore SJ. Habitat associations of secretive marsh birds in Iowa. Wetlands. 2013; 33: 561–571.

68. Miller DL, Rexstad E, Thomas L, Marshall L, Laake JL. Distance sampling in R [Internet]. Journal of Statistical Software. 2019 [cited 2019 May 1]. Available from: http://doi.org/10.18637/jss.v089.i01

69. R Core Team. R: a language and enironment for statistical computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2018. Available from: http://www.rproject.org/

70. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L. Introduction to distance sampling: Estimating abundance of biological populations. 1st ed. Oxford, U.K.: Oxford University Press; 2001.

71. Marques FFC, Buckland ST, Marques FFC, Buckland ST. Incorporating covariates into standard line transect analyses. Biometrics. 2003; 59: 924–935. doi: 10.1111/j.0006-341x.2003.00107.x 14969471

72. Marques FFC, Buckland ST. Covariate models for the detection function. In: Advanced Distance Sampling. Oxford, U.K.: Oxford University Press; 2004. p. 31–47.

73. Akaike H. Information theory and an extension of the maximum likelihood principle. In: Petran BN, Csaki F, editors. International symposium on information theory. Akad éiai Kiad ó Budapest, Hungary; 1973. p. 276–281.

74. Devries JH, Armstrong LM, MacFarlane RJ, Moats L, Thoroughgood PT. Waterfowl nesting in fall-seeded and spring-seeded cropland in Saskatchewan. J Wildl Manage. 2008; 72: 1790–1797.

75. Arnold TW. Uninformative parameters and model selection using Akaike’s Information Criterion. J Wildl Manage. 2010; 74: 1175–1178.

76. Laake JL, Borchers D, Thomas L, Bishop J. mrds: Mark-Recapture Distance Sampling. [Internet]. R package version 2.2.0; 2018 [cited 2019 May 1]. Available from: https://cran.r-project.org/package=mrds

77. Moreno-Ostos E, Paracuellos M, De Vicente I, Nevado JC, Cruz-Pizarro L. Response of waterbirds to alternating clear and turbid water phases in two shallow Mediterranean lakes. Aquat Ecol. 2008; 42: 701–706.

78. Epners CA, Bayley SE, Thompson JE, Tonn WM. Influence of fish assemblage and shallow lake productivity on waterfowl communities in the Boreal Transition Zone of western Canada. Freshw Biol. 2010; 55: 2265–2280.

79. Anteau MJ, Afton AD. Wetland use and feeding by lesser scaup during spring migration across the upper Midwest, USA. Wetlands. 2009; 29: 704–712.

80. Hickman S. Improvement of habitat quality for nesting and migrating birds at the Des Plaines River Wetlands Demonstration Project. Ecol Eng. 1994; 3: 485–494.

81. Ratti JT, Rocklage AM, Giudice JH, Garton EO, Daniel P. Comparison of avian communities on restored and natural wetlands in North and South Dakota. J Wildl Manage. 2001; 65: 676–684.

82. Harms TM, Dinsmore SJ. Influence of season and time of day on marsh bird detections. Wilson J Ornithol. 2014; 126: 30–38.

83. Conway CJ, Gibbs JP. Summary of intrinsic and extrinsic factors affecting detection probability of marsh birds. Wetlands. 2011; 31: 403–411.

84. Sauer JR, Blank PJ, Zipkin EF, Fallon JE, Fallon FW. Using multi-species occupancy models in structured decision making on managed lands. J Wildl Manage. 2013; 77: 117–127.

85. Tozer DC, Falconer CM, Bracey AM, Gnass Giese EE, Niemi GJ, Howe RW, et al. Influence of call broadcast timing within point counts and survey duration on detection probability of marsh breeding birds. Avian Conserv Ecol. 2017; 12: art8.

86. Twedt DJ, Wilson RR. Breeding birds in managed forests on public conservation lands in the Mississippi Alluvial Valley. For Ecol Manage. 2017; 384: 180–190.

87. Conway CJ, Simon JC. Comparison of detection probability associated with Burrowing Owl survey methods. J Wildl Manage. 2003; 67: 501–511.

88. Diefenbach DR, Brauning DW, Mattice JA. Variability in grassland bird counts related to observer differences and species detection rates. Auk. 2003; 120: 1168–1179.

89. Nadeau CP, Conway CJ, Smith BS, Thomas E, Nadeau CP, Conway CJ, et al. Maximizing detection probability of wetland-dependant birds during point-count surveys in northwestern Florida. Wilson J Ornithol. 2008; 120: 513–518.

90. Allredge MW, Simons TR, Pollock KH. A field evaluation of distance measurement error in auditory avian point count surveys. J Wildl Manage. 2007; 71: 2759–2766.

91. Holt RD, Butler MJ. Modeling audible detection of prairie grouse booming informs survey design. J Wildl Manage. 2019; 83: 638–645.

92. Tozer DC, Drake KL, Falconer CM. Modeling detection probability to improve marsh bird surveys in southern Canada and the Great Lakes states. Avian Conserv Ecol. 2016; 11.

93. Manning JA. Factors affecting detection probability of burrowing owls in southwest agroecosystem environments. J Wildl Manage. 2011; 75: 1558–1567.

94. Verner J. Time budget of the male Long-billed Marsh Wren during the breeding season. Condor. 2019; 67: 125–139.

95. Conway CJ, Gibbs JP. Factors influencing detection probability and the benefits of call broadcast surveys for monitoring marsh birds [Internet]. U.S. Geological Survey, Final Report, Patuxent Wildlife Research Center. Laurel, Maryland; 2001. Available from: http://ag.arizona.edu/research/azfwru/NationalMarshBird/downloads/technical_reports/Conway_and_Gibbs_2001_Report.pdf

96. Rush SA, Soehren EC, Stodola KW, Woodrey MS, Cooper RJ. Influence of Tidal Height on Detection of Breeding Marsh Birds Along the Northern Gulf of Mexico. Wilson J Ornithol. 2009; 121: 399–405.

97. Twedt DJ, Crawford RD. Yellow-headed Blackbird (Xanthocephalus xanthocephalus) [Internet]. The Birds of North America. 1995 [cited 2018 Jun 15]. Available from: https://birdsna.org/Species-Account/bna/species/yehbla/introduction

98. Kroodsma DE, Verner J. Marsh Wren (Cistothorus palustris) [Internet]. The Birds of North America. 2013 [cited 2018 Jun 15]. Available from: https://doi.org/10.2173/bna.308

99. Murkin HR, Murkin EJ, Ball JP. Avian habitat selection and Prarie wetland dynamics: A 10 year experiment. Ecol Appl. 1997; 7: 1144–1159.

100. Driver EA. Chironomid communities in samll prairie ponds: some characteriestics and controls. 1977; 7: 121–133.

101. Guzy MJ, Ritchison G. Common Yellowthroat (Geothlypis trichas) [Internet]. The Birds of North America. 1999 [cited 2019 May 1]. Available from: https://doi.org/10.2173/bna.448

102. Yasukawa K, Searcy WA. Red-winged Blackbird (Agelaius phoeniceus) [Internet]. The Birds of North America. 2019 [cited 2019 May 1]. Available from: https://doi.org/10.2173/bna.rewbla.02

103. Mowbray TB. Swamp Sparrow (Melospiza georgiana) [Internet]. The Birds of North America. 1997 [cited 2019 May 1]. Available from: https://doi.org/10.2173/bna.279


Článek vyšel v časopise

PLOS One


2020 Číslo 1
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

KOST
Koncepce osteologické péče pro gynekology a praktické lékaře
nový kurz
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Svět praktické medicíny 5/2023 (znalostní test z časopisu)

Imunopatologie? … a co my s tím???
Autoři: doc. MUDr. Helena Lahoda Brodská, Ph.D.

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#