The absence of interleukin 10 affects the morphology, differentiation, granule content and the production of cryptidin-4 in Paneth cells in mice


Autoři: Loni Berkowitz aff001;  Catalina Pardo-Roa aff002;  Gigliola Ramírez aff001;  Omar P. Vallejos aff002;  Valentina P. Sebastián aff002;  Claudia A. Riedel aff003;  Manuel Álvarez-Lobos aff001;  Susan M. Bueno aff002
Působiště autorů: Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile aff001;  Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile aff002;  Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0221618

Souhrn

Paneth cells (PCs) are specialized epithelial cells of the small bowel that contain multiple secretory granules filled with antimicrobial peptides and trophic factors, which are essential for the control of the microorganisms growth and maintaining intestinal integrity. Alterations in their function are associated with an imbalance of the normal microbiota, gastrointestinal infections and inflammatory processes, such as Crohn’s disease (CD). One of the most common murine models for studying CD is IL-10-/- mouse. IL-10-/- mice when housed in conventional conditions and take contact with commensal microorganisms develop an acute enterocolitis mediated by a Th1 immune response. Even though, alterations in PCs function are related to CD, they had not been characterized yet in this mouse model. Here we show that in specific pathogen free conditions IL-10-/- mice have aberrant granules and a large number of immature PCs at the bottom of the crypt in the ileum of IL-10-/- mice before developing intestinal inflammation, along with a reduced expression of Indian Hedgehog. In addition, IL-10-/- Paneth cells presented a reduced expression of cryptidin-4, and a heterogeneous distribution of lysozyme+ granules. The alterations in the maturation of the PCs at the bottom of the crypt were not modified after the colonization by the conventional microbiota. On the other hand, depletion of microbiota altered the phenotype, but did not normalize PCs. Our results suggest that IL-10 could be necessary for the integrity of PCs. Moreover, our results help to explain why IL-10-/- mice develop enterocolitis in response to microorganisms.

Klíčová slova:

Biology and life sciences – Microbiology – Medical microbiology – Microbiome – Microbial genomics – Genetics – Genomics – Anatomy – Digestive system – Gastrointestinal tract – Ileum – Biological tissue – Epithelium – Paneth cells – Developmental biology – Cell differentiation – Cell biology – Cellular types – Animal cells – Epithelial cells – Biochemistry – Enzymology – Enzymes – Lysozyme – Proteins – Medicine and health sciences – Immunology – Immune response – Inflammation – Diagnostic medicine – Signs and symptoms – Pathology and laboratory medicine – Gastroenterology and hepatology – Inflammatory bowel disease


Zdroje

1. Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. 2014;7: 113–20. doi: 10.2147/JIR.S65979 25075198

2. Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. Elsevier Ltd; 2012;380: 1590–605. doi: 10.1016/S0140-6736(12)60026-9

3. De Souza HSP, Fiocchi C. Immunopathogenesis of IBD: current state of the art. Nat Rev Gastroenterol Hepatol. 2016;13: 13–27. doi: 10.1038/nrgastro.2015.186 26627550

4. Csöngei V, Járomi L, Sáfrány E, Sipeky C, Magyari L, Faragó B, et al. Interaction of the major inflammatory bowel disease susceptibility alleles in Crohn’s disease patients. World J Gastroenterol. 2010;16: 176–83. Available: http://www.ncbi.nlm.nih.gov/pubmed/20066736 20066736

5. Glocker E-O, Kotlarz D, Klein C, Shah N, Grimbacher B. IL-10 and IL-10 receptor defects in humans. Ann N Y Acad Sci. 2011;1246: 102–7. doi: 10.1111/j.1749-6632.2011.06339.x 22236434

6. Cario E. Innate immune signalling at intestinal mucosal surfaces: a fine line between host protection and destruction. Curr Opin Gastroenterol. 2008;24: 725–32. doi: 10.1097/MOG.0b013e32830c4341 19122523

7. Pamer EG. Immune responses to commensal and environmental microbes. Nat Immunol. 2007;8: 1173–8. doi: 10.1038/ni1526 17952042

8. Takaishi H, Matsuki T, Nakazawa A, Takada T, Kado S, Asahara T, et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol. 2008;298: 463–72. doi: 10.1016/j.ijmm.2007.07.016 17897884

9. Chassaing B, Darfeuille-Michaud A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140: 1720–28. doi: 10.1053/j.gastro.2011.01.054 21530738

10. Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75: 263–74. doi: 10.1016/0092-8674(93)80068-p 8402911

11. Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998;66: 5224–31. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=108652&tool=pmcentrez&rendertype=abstract 9784526

12. Dieleman LA, Arends A, Tonkonogy SL, Goerres MS, Craft DW, Grenther W, et al. Helicobacter hepaticus does not induce or potentiate colitis in interleukin-10-deficient mice. Infect Immun. 2000;68: 5107–13. Available: http://www.ncbi.nlm.nih.gov/pubmed/10948132

13. Van der Linde K, Boor PPC, Sandkuijl LA, Meijssen MAC, Savelkoul HFJ, Wilson JHP, et al. A Gly15Arg mutation in the interleukin-10 gene reduces secretion of interleukin-10 in Crohn disease. Scand J Gastroenterol. 2003;38: 611–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/12825869

14. Zhu H, Lei X, Liu Q, Wang Y. Interleukin-10-1082A/G polymorphism and inflammatory bowel disease susceptibility: A meta-analysis based on 17,585 subjects. Cytokine. 2013;61: 146–153. doi: 10.1016/j.cyto.2012.09.009 23046617

15. Lin Z, Wang Z, Hegarty JP, Lin TR, Wang Y, Deiling S, et al. Genetic association and epistatic interaction of the interleukin-10 signaling pathway in pediatric inflammatory bowel disease. World J Gastroenterol. 2017;23: 4897. doi: 10.3748/wjg.v23.i27.4897 28785144

16. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A. 2008;105: 20858–63. doi: 10.1073/pnas.0808723105 19075245

17. Salzman NH, Bevins CL. Dysbiosis—a consequence of Paneth cell dysfunction. Semin Immunol. Elsevier Ltd; 2013;25: 334–41. doi: 10.1016/j.smim.2013.09.006 24239045

18. Adolph TE, Tomczak MF, Niederreiter L, Ko H-J, Böck J, Martinez-Naves E, et al. Paneth cells as a site of origin for intestinal inflammation. Nature. 2013;503: 272–6. doi: 10.1038/nature12599 24089213

19. Schultz BM, Salazar GA, Paduro CA, Pardo-Roa C, Pizarro DP, Salazar-Echegarai FJ, et al. Persistent Salmonella enterica serovar Typhimurium Infection Increases the Susceptibility of Mice to Develop Intestinal Inflammation. Front Immunol. 2018;9: 1166. doi: 10.3389/fimmu.2018.01166 29896196

20. Cadwell K, Liu JY, Brown SL, Miyoshi H, Loh J, Lennerz JK, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature. 2008;456: 259–63. doi: 10.1038/nature07416 18849966

21. King SL, Mohiuddin JJ, Dekaney CM. Paneth cells expand from newly created and preexisting cells during repair after doxorubicin-induced damage. AJP Gastrointest Liver Physiol. 2013;305: G151–G162. doi: 10.1152/ajpgi.00441.2012 23660502

22. Alberts B, Johnson A, Lewis J, Morgan D, Raff M, Roberts K, et al. Molecular Biology of THE CELL. 6th Editio. Garland Science; 2015.

23. Liu B, Gulati AS, Cantillana V, Henry SC, Schmidt EA, Daniell X, et al. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation. Am J Physiol Gastrointest Liver Physiol. 2013;305: G573–84. doi: 10.1152/ajpgi.00071.2013 23989005

24. Varnat F, Heggeler BB-T, Grisel P, Boucard N, Corthésy-Theulaz I, Wahli W, et al. PPARbeta/delta regulates paneth cell differentiation via controlling the hedgehog signaling pathway. Gastroenterology. 2006;131: 538–53.

25. Natividad JMM, Hayes CL, Motta J-P, Jury J, Galipeau HJ, Philip V, et al. Differential induction of antimicrobial REGIII by the intestinal microbiota and Bifidobacterium breve NCC2950. Appl Environ Microbiol. 2013;79: 7745–54. doi: 10.1128/AEM.02470-13 24096422

26. Xue Y, Zhang H, Sun X, Zhu M-J. Metformin Improves Ileal Epithelial Barrier Function in Interleukin-10 Deficient Mice. Han X, editor. PLoS One. 2016;11: e0168670. doi: 10.1371/journal.pone.0168670 28002460

27. Kosinski C, Stange DE, Xu C, Chan AS, Ho C, Yuen ST, et al. Indian hedgehog regulates intestinal stem cell fate through epithelial-mesenchymal interactions during development. Gastroenterology. NIH Public Access; 2010;139: 893–903. doi: 10.1053/j.gastro.2010.06.014 20542037

28. He XC, Zhang J, Tong W-G, Tawfik O, Ross J, Scoville DH, et al. BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt–β-catenin signaling. Nat Genet. 2004;36: 1117–1121. doi: 10.1038/ng1430 15378062

29. Demidova-Rice TN, Hamblin MR, Herman IM. Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: biology, causes, and approaches to care. Adv Skin Wound Care. NIH Public Access; 2012;25: 304–14. doi: 10.1097/01.ASW.0000416006.55218.d0 22713781

30. Quiros M, Nishio H, Neumann PA, Siuda D, Brazil JC, Azcutia V, et al. Macrophage-derived IL-10 mediates mucosal repair by epithelial WISP-1 signaling. J Clin Invest. 2017;127: 3510–3520. doi: 10.1172/JCI90229 28783045

31. Hasnain SZ, Tauro S, Das I, Tong H, Chen AC-H, Jeffery PL, et al. IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology. 2013;144: 357–368.e9. doi: 10.1053/j.gastro.2012.10.043 23123183

32. Kishore R, Krishnamurthy P, Garikipati VNS, Benedict C, Nickoloff E, Khan M, et al. Interleukin-10 inhibits chronic angiotensin II-induced pathological autophagy. J Mol Cell Cardiol. 2015;89: 203–13. doi: 10.1016/j.yjmcc.2015.11.004 26549357

33. Berg DJ, Davidson N, Kühn R, Müller W, Menon S, Holland G, et al. Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest. American Society for Clinical Investigation; 1996;98: 1010–20. doi: 10.1172/JCI118861 8770874

34. Schaubeck M, Clavel T, Calasan J, Lagkouvardos I, Haange SB, Jehmlich N, et al. Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut. 2016;65: 225–237. doi: 10.1136/gutjnl-2015-309333 25887379


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden