Interim report on the effective intraperitoneal therapy of insulin-dependent diabetes mellitus in pet dogs using “Neo-Islets,” aggregates of adipose stem and pancreatic islet cells (INAD 012-776)
Autoři:
Anna Gooch aff001; Ping Zhang aff001; Zhuma Hu aff001; Natasha Loy Son aff002; Nicole Avila aff002; Julie Fischer aff002; Gregory Roberts aff003; Rance Sellon aff003; Christof Westenfelder aff001
Působiště autorů:
SymbioCellTech, LLC, Salt Lake City, Utah, United States of America
aff001; Veterinary Specialty Hospital, San Diego, California, United States of America
aff002; Department of Veterinary Clinical Sciences, Washington State University, Pullman, Washington, United States of America
aff003; Department of Medicine, Division of Nephrology, University of Utah, Salt Lake City, Utah, United States of America
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0218688
Souhrn
We previously reported that allogeneic, intraperitoneally administered “Neo-Islets,” composed of cultured pancreatic islet cells co-aggregated with high numbers of immunoprotective and cytoprotective Adipose-derived Stem Cells, reestablished, through omental engraftment, redifferentiation and splenic and omental up-regulation of regulatory T-cells, normoglycemia in autoimmune Type-1 Diabetic Non-Obese Diabetic (NOD) mice without the use of immunosuppressive agents or encapsulation devices. Based on these observations, we are currently testing this Neo-Islet technology in an FDA guided pilot study (INAD 012–776) in insulin-dependent, spontaneously diabetic pet dogs by ultrasound-guided, intraperitoneal administration of 2x10e5 Neo-Islets/kilogram body weight to metabolically controlled (blood glucose, triglycerides, thyroid and adrenal functions) and sedated animals. We report here interim observations on the first 4 canine Neo-Islet-treated, insulin-dependent pet dogs that are now in the early to intermediate-term follow-up phase of the planned 3 year study (> 6 months post treatment). Current results from this translational study indicate that in dogs, Neo-Islets appear to engraft, redifferentiate and physiologically produce insulin, and are rejected by neither auto- nor allo-immune responses, as evidenced by (a) an absent IgG response to the allogeneic cells contained in the administered Neo-Islets, and (b) progressively improved glycemic control that achieves up to a 50% reduction in daily insulin needs paralleled by a statistically significant decrease in serum glucose concentrations. This is accomplished without the use of anti-rejection drugs or encapsulation devices. No adverse or serious adverse events related to the Neo-Islet administration have been observed to date. We conclude that this minimally invasive therapy has significant translational relevance to veterinary and clinical Type 1 diabetes mellitus by achieving complete and at this point partial glycemic control in two species, i.e., diabetic mice and dogs, respectively.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Animals – Vertebrates – Amniotes – Mammals – Dogs – Animal types – Pets and companion animals – Biochemistry – Hormones – Anatomy – Body fluids – Blood – Physiology – Zoology – Genetics – Gene expression – Medicine and health sciences – Endocrinology – Diabetic endocrinology – Insulin – Endocrine disorders – Metabolic disorders – Blood sugar – Physical sciences – Chemistry – Chemical compounds – Organic compounds – Carbohydrates – Monosaccharides – Glucose – Organic chemistry – Research and analysis methods – Immunologic techniques – Immunoassays – Enzyme-linked immunoassays
Zdroje
1. Fall T, Hamlin HH, Hedhammar A, Kämpe O, Egenvall A. Diabetes mellitus in a population of 180,000 insured dogs: incidence, survival, and breed distribution. J Vet Intern Med. 2007;21: 1209–1216. doi: 10.1892/07-021.1 18196728
2. Ahlgren KM, Fall T, Landegren N, Grimelius L, von Euler H, Sundberg K, et al. Lack of evidence for a role of islet autoimmunity in the aetiology of canine diabetes mellitus. PLoS One. 2014;9: e105473. doi: 10.1371/journal.pone.0105473 25153886
3. Guptill L, Glickman L, Glickman N. Time trends and risk factors for diabetes mellitus in dogs: Analysis of Veterinary Medical Data Base records (1970–1999). Vet J. 2003;165: 240–247. doi: 10.1016/S1090-0233(02)00242-3 12672370
4. Adin CA, Gilor C. The Diabetic Dog as a Translational Model for Human Islet Transplantation. Yale J Biol Med. 2017;90: 509–515. 28955189
5. Gilor C, Niessen SJM, Furrow E, DiBartola SP. What’s in a Name? Classification of Diabetes Mellitus in Veterinary Medicine and Why It Matters. J Vet Intern Med. 2016;30: 927–40. doi: 10.1111/jvim.14357 27461721
6. Morgan MJ, Vite CH, Radhakrishnan A, Hess RS. Clinical peripheral neuropathy associated with diabetes mellitus in 3 dogs. Can Vet J = La Rev Vet Can. 2008;49: 583–6.
7. Vrabelova D, Adin C, Gilor C, Rajab A. Pancreatic Islet Transplantation: From Dogs to Humans and Back Again. Vet Surg. 2014;43: 631–641. doi: 10.1111/j.1532-950X.2014.12224.x 24909456
8. Abalovich AG, Bacqué MC, Grana D, Milei J. Pig Pancreatic Islet Transplantation Into Spontaneously Diabetic Dogs. Transplant Proc. 2009;41: 328–330. doi: 10.1016/j.transproceed.2008.08.159 19249548
9. Alejandro R, Latif Z, Polonsky KS, Shienvold FL, Civantos F, Mint DH. Natural history of multiple intrahepatic canine islet allografts during and following administration of cyclosporine. Transplantation. 1988;45: 1036–1044. doi: 10.1097/00007890-198806000-00008 3132761
10. Shields EJ, Lam CJ, Cox AR, Rankin MM, Van Winkle TJ, Hess RS, et al. Extreme Beta-Cell Deficiency in Pancreata of Dogs with Canine Diabetes. PLoS One. 2015;10: e0129809. doi: 10.1371/journal.pone.0129809 26057531
11. O’Kell AL, Wasserfall C, Catchpole B, Davison LJ, Hess RS, Kushner JA, et al. Comparative Pathogenesis of Autoimmune Diabetes in Humans, NOD Mice, and Canines: Has a Valuable Animal Model of Type 1 Diabetes Been Overlooked? Diabetes. 2017;66: 1443–1452. doi: 10.2337/db16-1551 28533295
12. Short AD, Catchpole B, Kennedy LJ, Barnes A, Fretwell N, Jones C, et al. Analysis of candidate susceptibility genes in canine diabetes. J Hered. 2007;98: 518–25. doi: 10.1093/jhered/esm048 17611256
13. Fall T, Johansson Kreuger S, Juberget A°, Bergström A, Hedhammar A°. Gestational diabetes mellitus in 13 dogs. J Vet Intern Med. 2008;22: 1296–1300. doi: 10.1111/j.1939-1676.2008.0199.x 18976285
14. Fall T, Hedhammar A, Wallberg A, Fall N, Ahlgren KM, Hamlin HH, et al. Diabetes Mellitus in Elkhounds Is Associated with Diestrus and Pregnancy. J Vet Intern Med. 2010;24: 1322–1328. doi: 10.1111/j.1939-1676.2010.0630.x 21054539
15. Inverardi L, Lanzoni G, Dominguez-Bendala J, Ricordi C. MSCs for Diabetes. Mesenchymal Stromal Cells. New York, NY: Springer New York; 2013. pp. 571–597. doi: 10.1007/978-1-4614-5711-4_33
16. Davison LJ, Weenink SM, Christie MR, Herrtage ME, Catchpole B. Autoantibodies to GAD65 and IA-2 in canine diabetes mellitus. Vet Immunol Immunopathol. 2008;126: 83–90. doi: 10.1016/j.vetimm.2008.06.016 18706702
17. Davison LJ, Herrtage ME, Catchpole B. Autoantibodies to recombinant canine proinsulin in canine diabetic patients. Res Vet Sci. 2011;91: 58–63. doi: 10.1016/j.rvsc.2010.08.007 20855094
18. Holder AL, Kennedy LJ, Ollier WER, Catchpole B. Breed differences in development of anti-insulin antibodies in diabetic dogs and investigation of the role of dog leukocyte antigen (DLA) genes. Vet Immunol Immunopathol. 2015;167: 130–138. doi: 10.1016/j.vetimm.2015.07.014 26272177
19. Catchpole B, Adams JP, Holder AL, Short AD, Ollier WER, Kennedy LJ. Genetics of canine diabetes mellitus: are the diabetes susceptibility genes identified in humans involved in breed susceptibility to diabetes mellitus in dogs? Vet J. 2013;195: 139–47. doi: 10.1016/j.tvjl.2012.11.013 23265864
20. Warnock GL, Dabbs KD, Cattral MS, Rajotte R V. Improved survival of in vitro cultured canine islet allografts. Transplantation. 1994;57: 17–22. doi: 10.1097/00007890-199401000-00004 8291108
21. Westenfelder C, Gooch A, Hu Z, Ahlstrom J, Zhang P. Durable Control of Autoimmune Diabetes in Mice Achieved by Intraperitoneal Transplantation of “Neo-Islets,” Three-Dimensional Aggregates of Allogeneic Islet and “Mesenchymal Stem Cells”. Stem Cells Transl Med. 2017;6: 1631–1643. doi: 10.1002/sctm.17-0005 28467694
22. Vrabelova D, Adin CA, Kenzig A, Gilor C, Xu F, Buss JL, et al. Evaluation of a high-yield technique for pancreatic islet isolation from deceased canine donors. Domest Anim Endocrinol. 2014;47: 119–126. doi: 10.1016/j.domaniend.2013.01.006 23428563
23. Woolcott OO, Bergman RN, Richey JM, Kirkman EL, Harrison LN, Ionut V, et al. Simplified Method to Isolate Highly Pure Canine Pancreatic Islets. Pancreas. 2012;41: 31–38. doi: 10.1097/MPA.0b013e318221fd0e 21792087
24. Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, et al. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res. 2008;102: 77–85. doi: 10.1161/CIRCRESAHA.107.159475 17967785
25. Tögel F, Isaac J, Hu Z, Weiss K, Westenfelder C. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int. 2005;67: 1772–1784. doi: 10.1111/j.1523-1755.2005.00275.x 15840024
26. Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C. Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Ren Physiol. 2007;292: F1626–F1635. doi: 10.1152/ajprenal.00339.2006 17213465
27. Tögel F, Hu Z, Weiss K, Isaac J, Lange C, Westenfelder C. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms. Am J Physiol Renal Physiol. 2005;289: F31–42. doi: 10.1152/ajprenal.00007.2005 15713913
28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25: 402–408. doi: 10.1006/meth.2001.1262 11846609
29. Butte AJ, Ye J, Häring HU, Stumvoll M, White MF, Kohane IS. Determining significant fold differences in gene expression analysis. Pac Symp Biocomput. 2001; 6–17. 11262977
30. Pancotto TE, Rossmeisl JH. A case of stiff dog syndrome associated with anti-glutamic acid decarboxylase antibodies. J Clin Mov Disord. 2017;4: 5. doi: 10.1186/s40734-017-0053-3 28496986
31. Chen T, Yuan J, Duncanson S, Hibert ML, Kodish BC, Mylavaganam G, et al. Alginate encapsulant incorporating CXCL12 supports long-term allo- and xenoislet transplantation without systemic immune suppression. Am J Transplant. 2015;15: 618–27. doi: 10.1111/ajt.13049 25693473
32. McCandless EE, Wang Q, Woerner BM, Harper JM, Klein RS. CXCL12 limits inflammation by localizing mononuclear infiltrates to the perivascular space during experimental autoimmune encephalomyelitis. J Immunol. 2006;177: 8053–64. doi: 10.4049/jimmunol.177.11.8053 17114479
33. Tonne JM, Sakuma T, Deeds MC, Munoz-Gomez M, Barry M a, Kudva YC, et al. Global gene expression profiling of pancreatic islets in mice during streptozotocin-induced β-cell damage and pancreatic Glp-1 gene therapy. Dis Model Mech. 2013; doi: 10.1242/dmm.012591 23828045
34. Yan X, Cai S, Xiong X, Sun W, Dai X, Chen S, et al. Chemokine receptor CXCR7 mediates human endothelial progenitor cells survival, angiogenesis, but not proliferation. J Cell Biochem. 2012;113: 1437–1446. doi: 10.1002/jcb.24015 22173725
35. Tögel F, Zhang P, Hu Z, Westenfelder C. VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury. J Cell Mol Med. 2009;13: 2109–2114. doi: 10.1111/j.1582-4934.2008.00641.x 19397783
36. Sakata N, Chan NK, Chrisler J, Obenaus A, Hathout E. Bone marrow cells produce nerve growth factor and promote angiogenesis around transplanted islets. Bone. 2010;16: 1215–1220. doi: 10.3748/wjg.v16.i10.1215 20222164
37. Gebler A, Zabel O, Seliger B. The immunomodulatory capacity of mesenchymal stem cells. Trends Mol Med. Elsevier Ltd; 2012;18: 128–34. doi: 10.1016/j.molmed.2011.10.004 22118960
38. Lablanche S, Vantyghem M-C, Kessler L, Wojtusciszyn A, Borot S, Thivolet C, et al. Islet transplantation versus insulin therapy in patients with type 1 diabetes with severe hypoglycaemia or poorly controlled glycaemia after kidney transplantation (TRIMECO): a multicentre, randomised controlled trial. Lancet Diabetes Endocrinol. 2018;6: 527–537. doi: 10.1016/S2213-8587(18)30078-0 29776895
39. Dolgin E. Encapsulate this. Nat Publ Gr. Nature Publishing Group; 2014;20: 9–11. doi: 10.1038/nm0114-9 24398953
40. de Groot M, Schuurs TA, van Schilfgaarde R. Causes of limited survival of microencapsulated pancreatic islet grafts. J Surg Res. 2004;121: 141–50. doi: 10.1016/j.jss.2004.02.018 15313388
41. Gregory JM, Kraft G, Scott MF, Neal DW, Farmer B, Smith MS, et al. Insulin Delivery Into the Peripheral Circulation: A Key Contributor to Hypoglycemia in Type 1 Diabetes. Diabetes. 2015;64: 3439–3451. doi: 10.2337/db15-0071 26085570
42. Pørksen N, Grøfte T, Greisen J, Mengel A, Juhl C, Veldhuis JD, et al. Human insulin release processes measured by intraportal sampling. Am J Physiol Endocrinol Metab. 2002;282: E695–702. doi: 10.1152/ajpendo.00516.2000 11832375
43. Gregory JM, Smith TJ, Slaughter JC, Mason HR, Hughey CC, Smith MS, et al. Iatrogenic Hyperinsulinemia, Not Hyperglycemia, Drives Insulin Resistance in Type 1 Diabetes as Revealed by Comparison With GCK-MODY (MODY2). Diabetes. 2019;68: 1565–1576. doi: 10.2337/db19-0324 31092478
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- I mozek má svou krizi středního věku. Jak tyto změny souvisejí s rizikem demence ve stáří?
- Přerušovaný půst může mít významná zdravotní rizika
- Jak nám pocit vděčnosti pomáhá snáze se rozloučit se životem
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?