Genomic characterization of the complete terpene synthase gene family from Cannabis sativa
Autoři:
Keith D. Allen aff001; Kevin McKernan aff002; Christopher Pauli aff001; Jim Roe aff001; Anthony Torres aff001; Reggie Gaudino aff001
Působiště autorů:
Steep Hill Labs, Berkeley, California, United States of America
aff001; Medicinal Genomics, Woburn, Massachusetts, United States of America
aff002
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222363
Souhrn
Terpenes are responsible for most or all of the odor and flavor properties of Cannabis sativa, and may also impact effects users experience either directly or indirectly. We report the diversity of terpene profiles across samples bound for the Washington dispensary market. The remarkable degree of variation in terpene profiles ultimately results from action of a family of terpene synthase genes, only some of which have been described. Using a recently available genome assembly we describe 55 terpene synthases with genomic context, and tissue specific expression. The family is quite diverse from a protein similarity perspective, and subsets of the family are expressed in all tissues in the plant, including a set of root specific monoterpene synthases that could well have agronomic importance. Ultimately understanding and breeding for specific terpene profiles will require a good understanding of the gene family that underlies it. We intend for this work to serve as a foundation for that.
Klíčová slova:
Physical sciences – Chemistry – Chemical compounds – Organic compounds – Terpenes – Organic chemistry – Biology and life sciences – Computational biology – Introns – Genetics – Genomics – Genome complexity – Genome analysis – Transcriptome analysis – Sequence assembly tools – Genomic medicine – Gene expression – Molecular biology – Molecular biology techniques – DNA construction – DNA library construction – Genomic library construction – Research and analysis methods – Database and informatics methods – Bioinformatics – Sequence analysis – Sequence alignment
Zdroje
1. Chen F, Tholl D, Bohlmann J, Pichersky E. The family of terpene synthases in plants: a mid-size family of genes for specialized metabolism that is highly diversified throughout the kingdom. Plant J. 2011;66(1):212–29. doi: 10.1111/j.1365-313X.2011.04520.x 21443633
2. Russo EB. Taming THC: potential Cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol. 2011;163(7):1344–64. doi: 10.1111/j.1476-5381.2011.01238.x 21749363
3. Brenneisen R. Chemistry and Analysis of Phytocannabinoids and Other Cannabis Constituents. In: Marijuana and the Cannabinoids. Totowa, NJ: Humana Press; 2007. p. 17–49.
4. Xu J, Ai Y, Wang J, Xu J, Zhang Y, Yang D. Converting S-limonene synthase to pinene or phellandrene synthases reveals the plasticity of the active site. Phytochemistry. 2017;137:34–41. doi: 10.1016/j.phytochem.2017.02.017 28215610
5. Lesburg CA, Zhai G, Cane DE, Christianson DW. Crystal structure of pentalenene synthase: mechanistic insights on terpenoid cyclization reactions in biology. Science. 1997;277(5333):1820–4. doi: 10.1126/science.277.5333.1820 9295272
6. Degenhardt J, Köllner TG, Gershenzon J. Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry. 2009;70(15–16):1621–37. doi: 10.1016/j.phytochem.2009.07.030 19793600
7. Booth JK, Page JE, Bohlmann J. Terpene synthases from Cannabis sativa. PLoS One. 2017;12(3):e0173911. doi: 10.1371/journal.pone.0173911 28355238
8. Little DB, Croteau RB. Alteration of product formation by directed mutagenesis and truncation of the multiple-product sesquiterpene synthases δ-selinene synthase and γ-humulene synthase. Arch Biochem Biophys. 2002;402(1):120–35. doi: 10.1016/S0003-9861(02)00068-1 12051690
9. Yoshikuni Y, Ferrin TE, Keasling JD. Designed divergent evolution of enzyme function. Nature. 2006;440(7087):1078–82. doi: 10.1038/nature04607 16495946
10. Srividya N, Davis EM, Croteau RB, Lange BM. Functional analysis of (4 S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase. Proc Natl Acad Sci. 2015;112(11):3332–7. doi: 10.1073/pnas.1501203112 25733883
11. Bohlmann J, Meyer-Gauen G, Croteau R. Plant terpenoid synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci U S A. 1998;95(8):4126–33. doi: 10.1073/pnas.95.8.4126 9539701
12. Günnewich N, Page JE, Köllner TG, Degenhardt J, Kutchan TM. Functional expression and characterization of trichome-specific (-)-limonene synthase and (+)-α-pinene synthase from Cannabis sativa. Nat Prod Commun. 2007;2(3):223–32.
13. van Bakel H, Stout JM, Cote AG, Tallon CM, Sharpe AG, Hughes TR, et al. The draft genome and transcriptome of Cannibis sativa. Genome Biol. 2011;12(10):R102. doi: 10.1186/gb-2011-12-10-r102 22014239
14. Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc. 2016;11(9):1650–67. doi: 10.1038/nprot.2016.095 27560171
15. Frazee AC, Pertea G, Jaffe AE, Langmead B, Salzberg SL, Leek JT. Flexible isoform-level differential expression analysis with Ballgown. 2014; http://dx.doi.org/10.1101/003665
16. Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5. doi: 10.1038/nbt.3122 25690850
17. Butler JB, Freeman JS, Potts BM, Vaillancourt RE, Grattapaglia D, Silva-Junior OB, et al. Annotation of the Corymbia terpene synthase gene family shows broad conservation but dynamic evolution of physical clusters relative to Eucalyptus. Heredity (Edinb). 2018;121(1):87–104.
18. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. doi: 10.1093/nar/25.17.3389 9254694
19. Slater G, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics. 2005;6(1):31.
20. Fähnrich A, Krause K, Piechulla B. Product Variability of the ‘Cineole Cassette’ Monoterpene Synthases of Related Nicotiana Species. Mol Plant. 2011;4(6):965–84. doi: 10.1093/mp/ssr021 21527560
21. Huber DPW, Philippe RN, Godard K-A, Sturrock RN, Bohlmann J. Characterization of four terpene synthase cDNAs from methyl jasmonate-induced Douglas-fir, Pseudotsuga menziesii. Phytochemistry. 2005;66(12):1427–39. doi: 10.1016/j.phytochem.2005.04.030 15921711
22. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22(22):4673–80. doi: 10.1093/nar/22.22.4673 7984417
23. Hyatt DC, Youn B, Zhao Y, Santhamma B, Coates RM, Croteau RB, et al. Structure of limonene synthase, a simple model for terpenoid cyclase catalysis. Proc Natl Acad Sci. 2007;104(13):5360–5. doi: 10.1073/pnas.0700915104 17372193
24. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. doi: 10.1038/nmeth.3317 25751142
25. Martin DM, Aubourg S, Schouwey MB, Daviet L, Schalk M, Toub O, et al. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays. BMC Plant Biol. 2010;10(1):226.
26. Grassa CJ, Wenger JP, Dabney C, Poplawski SG, Motley ST, Michael TP, et al. A complete Cannabis chromosome assembly and adaptive admixture for elevated cannabidiol (CBD) content. bioRxiv. 2018;458083.
27. Greenhagen BT O’Maille PE, Noel JP, Chappell J. Identifying and manipulating structural determinates linking catalytic specificities in terpene synthases. Proc Natl Acad Sci U S A. 2006;103(26):9826–31. doi: 10.1073/pnas.0601605103 16785438
28. Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2012;193(4):997–1008. doi: 10.1111/j.1469-8137.2011.04001.x 22187939
29. Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature. 2005;434(7034):732–7. doi: 10.1038/nature03451 15815622
30. Ali JG, Alborn HT, Stelinski LL. Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. J Ecol. 2011;99(1):26–35.
31. Junker RR, Tholl D. Volatile Organic Compound Mediated Interactions at the Plant-Microbe Interface. J Chem Ecol. 2013;39(7):810–25. doi: 10.1007/s10886-013-0325-9 23881446
32. Pyun HJ, Wagschal KC, Jung DI, Coates RM, Croteau R. Stereochemistry of the Proton Elimination in the Formation of (+)- and (−)-α-Pinene by Monoterpene Cyclases from Sage (Salvia officinalis). Arch Biochem Biophys. 1994;308(2):488–96. doi: 10.1006/abbi.1994.1069 8109979
33. Külheim C, Padovan A, Hefer C, Krause ST, Köllner TG, Myburg AA, et al. The Eucalyptus terpene synthase gene family. BMC Genomics. 2015;16(1):450.
34. Falara V, Akhtar TA, Nguyen TTH, Spyropoulou EA, Bleeker PM, Schauvinhold I, et al. The Tomato Terpene Synthase Gene Family. 2011; https://doi.org/10.1104/pp.111.179648.
35. Aubourg S, Lecharny A, Bohlmann J. Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Molecular Genetics and Genomics. 2002 Aug 1;267(6):730–45. doi: 10.1007/s00438-002-0709-y 12207221
36. Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol. 2017;91(Pt B):145–55. doi: 10.1016/j.biocel.2017.06.016 28673892
37. Rose AB. Introns as Gene Regulators: A Brick on the Accelerator. Front Genet. 2019;9:672. doi: 10.3389/fgene.2018.00672 30792737
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Proč jsou nemocnice nepřítelem spánku? A jak to změnit?
- Dlouhodobá ketodieta může poškozovat naše orgány
- „Jednohubky“ z klinického výzkumu – 2024/42
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- MUDr. Jana Horáková: Remise již dosahujeme u více než 80 % pacientů s myastenií