Organic resolution function and effects of platinum nanoparticles on bacteria and organic matter
Autoři:
Hiroo Itohiya aff001; Yuji Matsushima aff001; Satoshi Shirakawa aff001; Sohtaro Kajiyama aff001; Akihiro Yashima aff001; Takatoshi Nagano aff001; Kazuhiro Gomi aff001
Působiště autorů:
Department of Periodontology, Tsurumi University, School of Dental Medicine, Tsurumi, Tsurumi ku, Yokohama, Japan
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222634
Souhrn
Rapid progress has been made in terms of metal nanoparticles studied in numerous fields. Metal nanoparticles have also been used in medical research, and antibacterial properties and anticancer effects have been reported. However, the underlying mechanism responsible for these effects has not been fully elucidated. Therefore, the present study focused on platinum nanoparticles (PtNPs) and examined their antibacterial properties and functional potential for decomposing organic matter, considering potential applications in the dental field. PtNPs were allowed to react with dental-related bacteria (Streptococcus mutans; Enterococcus faecalis, caries; Porphyromonas gingivalis, and endodontic and periodontal lesions). Antibacterial properties were evaluated by measuring colony formation. In addition, PtNPs were allowed to react with albumin and lipopolysaccharides (LPSs), and the functional potential to decompose organic matter was evaluated. All evaluations were performed in vitro. Colony formation in all bacterial species was completely suppressed by PtNPs at concentrations of >5 ppm. The addition of PtNPs at concentrations of >10 ppm significantly increased fragmentation and decomposition. The addition of PtNPs at concentrations of >125 pico/mL to 1 EU/mL LPS resulted in significant amounts of decomposition and elimination. The results revealed that PtNPs had antibacterial effects against dental-related bacteria and proteolytic potential to decompose proteins and LPS, an inflammatory factor associated with periodontal disease. Therefore, the use and application of PtNPs in periodontal and endodontic treatment is considered promising.
Klíčová slova:
Medicine and health sciences – Pharmacology – Drugs – Antibacterials – Pathology and laboratory medicine – Pathogens – Streptococcus – Streptococcus mutans – Enterococcus – Enterococcus faecalis – Biology and life sciences – Microbiology – Microbial control – Antimicrobials – Medical microbiology – Microbial pathogens – Bacterial pathogens – Bacteriology – Gram negative bacteria – Biochemistry – Proteins – Albumins – Organisms – Bacteria – Engineering and technology – Nanotechnology – Nanoparticles – Physical sciences – Materials science – Metallurgy – Metals – Chemistry – Chemical elements – Platinum
Zdroje
1. Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35: 583–592. doi: 10.1039/b502142c 16791330
2. Schmid G. Clusters and Colloids from Theory to Application VCH, Weinheim; 1994.
3. Corain B, Schmid G, Toshima N, editors. Metal Nano-cluster in Catalysis and Materials Science: The Issue of Size control. Elsevier, Amsterdam; 2008.
4. Silvert PY, Herrera-Urbina R, Tekaia-Elhsissen K. Preparation of colloidal silver dispersions by the polyol process. Part 1—Synthesis and characterization. J Mater Chem. 1996;6: 573–577. doi: 10.1039/JM9960600573
5. Toshima N, Yonezawa T. Bimetallic nanoparticles—materials for chemical and physical applications. New J Chem. 1998;22: 1179–1201. doi: 10.1039/a805753b
6. Wieckowski A, Savinova ER, Vayenas CG, editors. Catalysis and electrocatalysis at nanoparticle surfaces. CRC Press; 2003.
7. Taylor E, Webster TJ. Reducing infections through nanotechnology and nanoparticles. Int J Nanomedicine. 2011;6: 1463. doi: 10.2147/IJN.S22021 21796248
8. Veerapandian M, Yun K. Functionalization of biomolecules on nanoparticles specialized for antibacterial applications. Appl Microbiol Biotechnol. 2011;90: 1655–1667. doi: 10.1007/s00253-011-3291-6 21523475
9. Yamada M, Foote M, Prow TW. Therapeutic gold, silver, and platinum nanoparticles. WIREs Nanomed Nanobiotechnol. 2015;7: 428–445. doi: 10.1002/wnan.1322 25521618
10. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed. 2017;14: 1227–1249. doi: 10.2147/IJN.S121956
11. McGuffie MJ, Hong J, Bahng JH, Glynos E, Green PF, Kotov NA, et al. Zinc oxide nanoparticle suspensions and layer-by-layer coatings inhibit staphylococcal growth. Nanomedicine. 2016;12: 33–42. doi: 10.1016/j.nano.2015.10.002 26515755
12. Su Y, Zheng X, Chen Y, Li M, Liu K. Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Sci Rep. 2015;5: 15824. doi: 10.1038/srep15824 26508362
13. Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009;27: 76–83. doi: 10.1016/j.biotechadv.2008.09.002 18854209
14. Rai A, Prabhune A, Perry CC. Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem. 2010;20: 6789–6798. doi: 10.1039/c0jm00817f
15. Yang X, Yang J, Wang L, Ran B, Jia Y, Zhang L, et al. Pharmaceutical Intermediate-modified gold nanoparticles: Against multidrug-resistant bacteria and wound-healing application via an electrospun scaffold. ACS Nano. 2017;11: 5737–5745. doi: 10.1021/acsnano.7b01240 28531351
16. Rosenberg B, Vancamp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965;205: 698–699. doi: 10.1038/205698a0 14287410
17. Sawosz E, Chwalibog A, Szeliga J, Sawosz F, Grodzik M, Rupiewicz M, et al. Visualization of gold and platinum nanoparticles interacting with Salmonella enteritidis and Listeria monocytogenes. Int J Nanomedicine. 2010;5: 631–637. doi: 10.2147/IJN.S12361 20856838
18. Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomedicine. 2010;5: 1085–1094. doi: 10.2147/IJN.S13532 21270959
19. Konieczny P, Goralczyk AG, Szmyd R, Skalniak L, Koziel J, Filon FL, et al. Effects triggered by platinum nanoparticles on primary keratinocytes. Int J Nanomedicine. 2013;8: 3963–3975. doi: 10.2147/IJN.S49612 24204135
20. Horie M, Kato H, Endoh S, Fujita K, Komaba LK, Nishio K, et al. Cellular effects of industrial metal nanoparticles and hydrophilic carbon black dispersion. J Toxicol Sci. 2014;39: 897–907. doi: 10.2131/jts.39.897 25421968
21. Onizawa S, Aoshiba K, Kajita M, Miyamoto Y, Nagai A. Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm Pharmacol Ther. 2009; 22: 340–349. doi: 10.1016/j.pupt.2008.12.015 19166956
22. Mayer AB. Colloidal metal nanoparticles dispersed in amphiphilic polymers. Polym Adv Technol. 2001; 12: 96–106. doi: 10.1002/1099-1581(200101/02)12:1/2<96::AID-PAT943>3.0.CO;2-G
23. Ma S, Izutani N, Imazato S, Chen JH, Kiba W, Yoshikawa R, et al. Assessment of bactericidal effects of quaternary ammonium-based antibacterial monomers in combination with colloidal platinum nanoparticles. Dent Mater J. 2012;31: 150–156. doi: 10.4012/dmj.2011-180 22277619
24. Mafune F, Kohno J, Takeda Y, Kondow T. Formation of Stable Platinum Nanoparticles by Laser Ablation in Water. J Phys Chem. 2003; 107: 4218–4223.
25. Mathur A, Kumari J, Parashar A, Lavanya T, Chandrasekaran N, Mukherjee A. Decreased Phototoxic Effects of TiO2 Nanoparticles in Consortium of Bacterial Isolates from Domestic Waste Water. PLoS One. 2015; 10(10): e0141301. doi: 10.1371/journal.pone.0141301 26496250
26. Laemmli UK. Cleavage of structural Proteins during the assembly of the Head of Bacteriophage T4. Nature. 1970; 227: 680–685. doi: 10.1038/227680a0 5432063
27. Brown RE, Jarvis KL, Hyland KJ. Protein measurement using bicinchoninic acid: elimination of interfering substances. Anal Biochem. 1989;180: 136–139. doi: 10.1016/0003-2697(89)90101-2 2817336
28. Gopal J, Hasan N, Manikandan M, Wu HF. Bacterial toxicity/compatibility of platinum nanospheres, nanocuboids and nanoflowers. Sci Rep. 2013;3: 1260. doi: 10.1038/srep01260 23405274
29. Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology. 2016;10: 1021–1040. doi: 10.1080/17435390.2016.1189614 27240148
30. Yhee JY, Son S, Lee H, Kim K. Nanoparticle-based combination therapy for cancer treatment. Curr Pharm Des. 2015;21: 3158–3166. doi: 10.2174/1381612821666150531165059 26027570
31. Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomedicine. 2010;5: 1085–1094. doi: 10.2147/IJN.S13532 21270959
32. Sawosz E, Chwalibog A, Szeliga J, Sawosz F, Grodzik M, Rupiewicz M, et al. Visualization of gold and platinum nanoparticles interacting with Salmonella enteritidis and Listeria monocytogenes. Int J Nanomedicine. 2010; 5: 631–637. doi: 10.2147/IJN.S12361 20856838
33. Konieczny P, Goralczyk AG, Szmyd R, Skalniak L, Koziel J, Filon FL, et al. Effects triggered by platinum nanoparticles on primary keratinocytes. Int J Nanomedicine. 2013;8: 3963–3975. doi: 10.2147/IJN.S49612 24204135
34. Lu Z, Rong K, Li J, Yang H, Chen R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J Mater Sci Mater Med. 2013; 24: 1465–1471. doi: 10.1007/s10856-013-4894-5 23440430
35. Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomedicine. 2010;5: 1085–1094. doi: 10.2147/IJN.S13532 21270959
36. Sawosz E, Chwalibog A, Szeliga J, Sawosz F, Grodzik M, Rupiewicz M, et al. Visualization of gold and platinum nanoparticles interacting with Salmonella enteritidis and Listeria monocytogenes. Int J Nanomedicine. 2010;5: 631–637. doi: 10.2147/IJN.S12361 20856838
37. Slavin YN, Asnis J, Häfeli UO, Bach H. Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnology. 2017;15(1):65. doi: 10.1186/s12951-017-0308-z 28974225
38. Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, et al. Protein damage, repair and proteolysis. Mol Aspects Med. 2014; 35:1–71. doi: 10.1016/j.mam.2012.09.001 23107776
39. Socransky SS, Haffajee AD. The bacterial etiology of destructive periodontal disease: current concepts. J Periodontol. 1992;63: 322–331. doi: 10.1902/jop.1992.63.4s.322
40. Hanazawa S, Nakada K, Ohmori Y, Miyoshi T, Amano S, Kitano S. Functional role of interleukin 1 in periodontal disease: induction of interleukin 1 production by Bacteroides gingivalis lipopolysaccharide in peritoneal macrophages from C3H/HeN and C3H/HeJ mice. Infect Immun. 1985;50: 262–270. 3876285
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Proč jsou nemocnice nepřítelem spánku? A jak to změnit?
- Dlouhodobá ketodieta může poškozovat naše orgány
- „Jednohubky“ z klinického výzkumu – 2024/42
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- MUDr. Jana Horáková: Remise již dosahujeme u více než 80 % pacientů s myastenií