Reference values for the cervical spinal canal and the vertebral bodies by MRI in a general population


Autoři: Christopher Nell aff001;  Robin Bülow aff001;  Norbert Hosten aff001;  Carsten Oliver Schmidt aff002;  Katrin Hegenscheid aff001
Působiště autorů: Department of Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Mecklenburg-Western Pomerania, Germany aff001;  Institute for Community Medicine, University Medicine Greifswald, Greifswald, Mecklenburg-Western Pomerania, Germany aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222682

Souhrn

Purpose

To provide population-based reference values for cervical spinal canal parameters and vertebral body (VB) width and to study their associations with sex, age, body height, body weight and body mass index (BMI) using MRI.

Methods

Cross-sectional analyses included data from 2,453 participants, aged 21–89 years, of the population-based Study of Health in Pomerania (SHIP) who underwent whole-body MRI at 1.5 Tesla between July 2008 and March 2011. A standardised reading was performed for the C2-C7 cervical spine levels at sagittal T2 TSE weighted sequences.

Results

Reference intervals for spinal canal parameters were similar in males and females, while VB width was on average 2.1–2.2 mm larger in males. Age effects were only substantial regarding VB width with a 0.5 mm per ten-year age increase. Body height effects were only substantial regarding the osseous spinal canal and VB width. Body weight and BMI effects are mostly not substantial.

Conclusions

Our study provides MRI-based reference values for the cervical spinal canal parameters in an adult Caucasian population. Except for VB width, associations with sex, age and somatometric measures are mostly small and thus have only limited clinical implications. Some available cut-off values may need a revision because they likely overestimate risks.

Klíčová slova:

Body Mass Index – Body weight – Magnetic resonance imaging – Spine – Stenosis – Body height – Canals


Zdroje

1. Matsumoto M, Fujimura Y, Suzuki N, Nishi Y, Nakamura M, Yabe Y, et al. MRI of cervical intervertebral discs in asymptomatic subjects. J Bone Joint Surg Br. 1998;80(1):19–24. doi: 10.1302/0301-620x.80b1.7929 9460946

2. Morishita Y, Naito M, Hymanson H, Miyazaki M, Wu G, Wang JC. The relationship between the cervical spinal canal diameter and the pathological changes in the cervical spine. European Spine Journal. 2009;18(6):877–83. doi: 10.1007/s00586-009-0968-y 19357877

3. Sasiadek MJ, Bladowska J. Imaging of degenerative spine disease—the state of the art. Adv Clin Exp Med. 2012;21(2):133–42. 23214277

4. Ulbrich EJ, Schraner C, Boesch C, Hodler J, Busato A, Anderson SE, et al. Normative MR cervical spinal canal dimensions. Radiology. 2014;271(1):172–82. doi: 10.1148/radiol.13120370 24475792

5. Kato F, Yukawa Y, Suda K, Yamagata M, Ueta T. Normal morphology, age-related changes and abnormal findings of the cervical spine. Part II: Magnetic resonance imaging of over 1,200 asymptomatic subjects. Eur Spine J. 2012;21(8):1499–507. doi: 10.1007/s00586-012-2176-4 22302162

6. Tierney RT, Maldjian C, Mattacola CG, Straub SJ, Sitler MR. Cervical Spine Stenosis Measures in Normal Subjects. J Athl Train. 2002;37(2):190–3. 12937434

7. Prasad SS O’Malley M, Caplan M, Shackleford IM, Pydisetty RK. MRI Measurements of the Cervical Spine and Their Correlation to Pavlov’s Ratio. Spine. 2003;28(12):1263–8. doi: 10.1097/01.BRS.0000065570.20888.AA 12811269

8. Fradet L, Arnoux P-J, Ranjeva J-P, Petit Y, Callot V. Morphometrics of the Entire Human Spinal Cord and Spinal Canal Measured From In Vivo High-Resolution Anatomical Magnetic Resonance Imaging. Spine. 2014;39(4):E262–E9. doi: 10.1097/BRS.0000000000000125 24253776

9. Ishikawa M, Matsumoto M, Fujimura Y, Chiba K, Toyama Y. Changes of cervical spinal cord and cervical spinal canal with age in asymptomatic subjects. Spinal Cord. 2003;41(3):159–63. doi: 10.1038/sj.sc.3101375 12612618

10. Okada Y, Ikata T, Katoh S, Yamada H. Morphologic analysis of the cervical spinal cord, dural tube, and spinal canal by magnetic resonance imaging in normal adults and patients with cervical spondylotic myelopathy. Spine. 1994;19(20):2331–5. doi: 10.1097/00007632-199410150-00014 7846579

11. Aebli N, Rüegg TB, Wicki AG, Petrou N, Krebs J. Predicting the risk and severity of acute spinal cord injury after a minor trauma to the cervical spine. Spine J. 2013;13(6):597–604. doi: 10.1016/j.spinee.2013.02.006 23523437

12. Nagata K, Yoshimura N, Hashizume H, Muraki S, Ishimoto Y, Yamada H, et al. The prevalence of cervical myelopathy among subjects with narrow cervical spinal canal in a population-based magnetic resonance imaging study: the Wakayama Spine Study. Spine J. 2014;14(12):2811–7. doi: 10.1016/j.spinee.2014.03.051 24709229

13. Torg JS, Pavlov H, Genuario SE, Sennett B, Wisneski RJ, Robie BH, et al. Neurapraxia of the cervical spinal cord with transient quadriplegia. J Bone Joint Surg Am. 1986;68(9):1354–70. 3782207

14. Pavlov H, Torg JS, Robie B, Jahre C. Cervical spinal stenosis: determination with vertebral body ratio method. Radiology. 1987;164(3):771–5. doi: 10.1148/radiology.164.3.3615879 3615879

15. Gräsbeck R. Reference values and reference intervals. McGraw-Hill Yearbook of Science and Technology 2008: McGraw-Hill Education; 2008. p. 286–8.

16. Hegenscheid K, Kühn JP, Völzke H, Biffar R, Hosten N, Puls R. Whole-body magnetic resonance imaging of healthy volunteers: pilot study results from the population-based SHIP study. Rofo. 2009;181(8):748–59. doi: 10.1055/s-0028-1109510 19598074

17. Schmidt CO, Sierocinski E, Hegenscheid K, Baumeister SE, Grabe HJ, Völzke H. Impact of whole-body MRI in a general population study. Eur J Epidemiol. 2015:1–9. doi: 10.1007/s10654-015-9996-6

18. Völzke H, Alte D, Schmidt CO, Radke D, Lorbeer R, Friedrich N, et al. Cohort Profile: The Study of Health in Pomerania. International Journal of Epidemiology. 2011;40(2):294–307. doi: 10.1093/ije/dyp394 20167617

19. Premchandran D, Saralaya VV, Mahale A. Predicting lumbar central canal stenosis—a magnetic resonance imaging study. J Clin Diagn Res. 2014;8(11):RC01–4. doi: 10.7860/JCDR/2014/8448.5097 25584282

20. Torg JS, Corcoran TA, Thibault LE, Pavlov H, Sennett BJ, Naranja RJ Jr., et al. Cervical cord neurapraxia: classification, pathomechanics, morbidity, and management guidelines. Journal of Neurosurgery. 1997;87(6):843–50. doi: 10.3171/jns.1997.87.6.0843 9384393

21. Busija L, Pausenberger E, Haines TP, Haymes S, Buchbinder R, Osborne RH. Adult measures of general health and health-related quality of life: Medical Outcomes Study Short Form 36-Item (SF-36) and Short Form 12-Item (SF-12) Health Surveys, Nottingham Health Profile (NHP), Sickness Impact Profile (SIP), Medical Outcomes Study Short Form 6D (SF-6D), Health Utilities Index Mark 3 (HUI3), Quality of Well-Being Scale (QWB), and Assessment of Quality of Life (AQoL). Arthritis Care Res (Hoboken). 2011;63 Suppl 11:S383–412. doi: 10.1002/acr.20541 22588759.

22. Royston P, Sauerbrei W. Multivariable Model—Building: A Pragmatic Approach to Regression Anaylsis based on Fractional Polynomials for Modelling Continuous Variables: Wiley; 2008.

23. Hukuda S, Kojima Y. Sex discrepancy in the canal/body ratio of the cervical spine implicating the prevalence of cervical myelopathy in men. Spine. 2002;27(3):250–3. doi: 10.1097/00007632-200202010-00009 11805686

24. Lee MJ. Prevalence of Cervical Spine Stenosis: Anatomic Study in Cadavers. J Bone Joint Surg Am. 2007;89(2):376. doi: 10.2106/JBJS.F.00437 17272453

25. Herzog RJ, Wiens JJ, Dillingham MF, Sontag MJ. Normal cervical spine morphometry and cervical spinal stenosis in asymptomatic professional football players. Plain film radiography, multiplanar computed tomography, and magnetic resonance imaging. Spine. 1991;16(6 Suppl):S178–86. doi: 10.1097/00007632-199106001-00001 1862411

26. Epstein NE, Epstein JA, Carras R, Murthy VS, Hyman RA. Coexisting cervical and lumbar spinal stenosis: diagnosis and management. Neurosurgery. 1984;15(4):489–96. doi: 10.1227/00006123-198410000-00003 6493458

27. Countee RW, Vijayanathan T. Congenital stenosis of the cervical spine: diagnosis and management. J Natl Med Assoc. 1979;71(3):257–64. 439156

28. Tatarek NE. Variation in the human cervical neural canal. Spine J. 2005;5(6):623–31. doi: 10.1016/j.spinee.2005.07.009 16291101

29. Goto S-i, Umehara J, Aizawa T, Kokubun S. Comparison of cervical spinal canal diameter between younger and elder generations of Japanese. J Orthop Sci. 2010;15(1):97–103. doi: 10.1007/s00776-009-1427-7 20151258

30. Tang Y, Yu M, Liu Z, Sun Y, Liu X. Influence of developmental cervical stenosis on dural sac space. Chin Med J. 2014;127(22):3857–61. 25421180

31. Lindberg PG, Feydy A, Sanchez K, Rannou F, Maier MA. Measures of spinal canal stenosis and relationship to spinal cord structure in patients with cervical spondylosis. Journal of Neuroradiology. 2012;39(4):236–42.

32. Cushnie D, Urquhart JC, Gurr KR, Siddiqi F, Bailey CS. Obesity and spinal epidural lipomatosis in cauda equina syndrome. Spine J. 2017. doi: 10.1016/j.spinee.2017.07.177 28756300.

33. Fries P, Runge VM, Kirchin MA, Watkins DM, Buecker A, Schneider G. Magnetic resonance imaging of the spine at 3 Tesla. Semin Musculoskelet Radiol. 2008;12(3):238–52. doi: 10.1055/s-0028-1083107 18850504.

34. Schmidt GP, Wintersperger B, Graser A, Baur-Melnyk A, Reiser MF, Schoenberg SO. High-resolution whole-body magnetic resonance imaging applications at 1.5 and 3 Tesla: a comparative study. Invest Radiol. 2007;42(6):449–59. doi: 10.1097/01.rli.0000262089.55618.18 17507818.

35. Phalke VV, Gujar S, Quint DJ. Comparison of 3.0 T versus 1.5 T MR: imaging of the spine. Neuroimaging Clin N Am. 2006;16(2):241–8, ix. doi: 10.1016/j.nic.2006.02.005 16731363.

36. Shapiro M. Imaging of the spine at 3 tesla. Neuroimaging Clin N Am. 2012;22(2):315–41, xi-xii. doi: 10.1016/j.nic.2012.03.001 22548935.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden