Novel application of amino-acid buffered solution for neuroprotection against ischemia/reperfusion injury


Autoři: Jiun Hsu aff001;  Chih-Hsien Wang aff002;  Shu-Chien Huang aff002;  Yung-Wei Chen aff001;  Shengpin Yu aff001;  Juey-Jen Hwang aff003;  Jou-Wei Lin aff003;  Ming-Chieh Ma aff004;  Yih-Sharng Chen aff002
Působiště autorů: Department of Cardiovascular Surgery, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan aff001;  Department of Cardiovascular Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan aff002;  Department of Cardiovascular Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin, Taiwan aff003;  School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0221039

Souhrn

Ischemic neuron loss contributes to brain dysfunction in patients with cardiac arrest (CA). Histidine–tryptophan–ketoglutarate (HTK) solution is a preservative used during organ transplantation. We tested the potential of HTK to protect neurons from severe hypoxia (SH) following CA. We isolated rat primary cortical neurons and induced SH with or without HTK. Changes in caspase-3, hypoxia-inducible factor 1-alpha (HIF-1α), and nicotinamide adenine dinucleotide phosphate oxidase-4 (NOX4) expression were evaluated at different time points up to 72 h. Using a rat asphyxia model, we induced CA-mediated brain damage and then completed resuscitation. HTK or sterile saline was administered into the left carotid artery. Neurological deficit scoring and mortality were evaluated for 3 days. Then the rats were sacrificed for evaluation of NOX4 and H2O2 levels in blood and brain. In the in vitro study, HTK attenuated SH- and H2O2-mediated cytotoxicity in a volume- and time-dependent manner, associated with persistent HIF-1α expression and reductions in procaspase-3 activation and NOX4 expression. The inhibition of HIF-1α abrogated HTK’s effect on NOX4. In the in vivo study, neurological scores were significantly improved by HTK. H2O2 level, NOX4 activity, and NOX4 gene expression were all decreased in the brain specimens of HTK-treated rats. Our results suggest that HTK acts as an effective neuroprotective solution by maintaining elevated HIF-1α level, which was associated with inhibited procaspase-3 activation and decreased NOX4 expression.

Klíčová slova:

Medicine and health sciences – Diagnostic medicine – Signs and symptoms – Asphyxia – Pathology and laboratory medicine – Critical care and emergency medicine – Resuscitation – Neurology – Brain damage – Cerebral ischemia – Vascular medicine – Ischemia – Biology and life sciences – Cell biology – Hypoxia – Cellular types – Animal cells – Neuroscience – Cellular neuroscience – Neurons – Biochemistry – Proteins – Amino acids – Basic amino acids – Histidine – Physical sciences – Chemistry – Chemical compounds – Organic compounds – Organic chemistry


Zdroje

1. Chen YS, Chao A, Yu HY, Ko WJ, Wu IH, Chen RJC, et al. Analysis and results of prolonged resuscitation in cardiac arrest patients rescued by extracorporeal membrane oxygenation. J Am Coll Cardiol. Elsevier Masson SAS; 2003;41: 197–203. doi: 10.1016/s0735-1097(02)02716-x 12535808

2. Huang SC, Wu ET, Chen YS, Chang CI, Chiu IS, Wang S-S, et al. Extracorporeal membrane oxygenation rescue for cardiopulmonary resuscitation in pediatric patients. Crit Care Med. 2008;36: 1607–1613. doi: 10.1097/CCM.0b013e318170b82b 18434885

3. Dragancea I, Rundgren M, Englund E, Friberg H, Cronberg T. The influence of induced hypothermia and delayed prognostication on the mode of death after cardiac arrest. Resuscitation. 2013;84: 337–342. doi: 10.1016/j.resuscitation.2012.09.015 23000363

4. Augoustides JGT, Stone ME, Drenger B. Novel approaches to spinal cord protection during thoracoabdominal aortic interventions. Curr Opin Anaesthesiol. 2014;27: 98–105. doi: 10.1097/ACO.0000000000000033 24322209

5. Bretschneider HJ. Myocardial protection. Thorac Cardiovasc Surg. 1980;28: 295–302. doi: 10.1055/s-2007-1022099 6161427

6. Fridell JA, Mangus RS, Tector AJ. Clinical experience with histidine-tryptophan-ketoglutarate solution in abdominal organ preservation: A review of recent literature. Clin Transplant. 2009. pp. 305–312. doi: 10.1111/j.1399-0012.2008.00952.x 19191799

7. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12: 5447–5454. doi: 10.1128/mcb.12.12.5447 1448077

8. Tekin D, Dursun AD, Xi L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol Sin. Nature Publishing Group; 2010;31: 1085–1094. doi: 10.1038/aps.2010.132 20711226

9. Van Hoecke M, Prigent-Tessier AS, Garnier PE, Bertrand NM, Filomenko R, Bettaieb A, et al. Evidence of HIF-1 functional binding activity to caspase-3 promoter after photothrombotic cerebral ischemia. Mol Cell Neurosci. 2007;34: 40–47. doi: 10.1016/j.mcn.2006.09.009 17101276

10. Vallet P, Charnay Y, Steger K, Ogier-Denis E, Kovari E, Herrmann F, et al. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience. 2005;132: 233–238. doi: 10.1016/j.neuroscience.2004.12.038 15802177

11. Diebold I, Petry A, Hess J, Görlach A. The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1. Mol Biol Cell. 2010;21: 2087–96. doi: 10.1091/mbc.E09-12-1003 20427574

12. Matsushima S, Kuroda J, Ago T, Zhai P, Ikeda Y, Oka S, et al. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α. Circ Res. 2013;112: 1135–1149. doi: 10.1161/CIRCRESAHA.111.300171 23476056

13. Hendrickx HHL, Safar P, Miller A. Asphyxia, cardiac arrest and resuscitation in rats. II. Long term behavioral changes. Resuscitation. 1984;12: 117–128. doi: 10.1016/0300-9572(84)90063-7 6091201

14. Ma MC, Qian H, Ghassemi F, Zhao P, Xia Y. Oxygen-sensitive delta-opioid receptor-regulated survival and death signals: Novel insights into neuronal preconditioning and protection. J Biol Chem. 2005;280: 16208–16218. doi: 10.1074/jbc.M408055200 15687501

15. Viana FF, Shi WY, Hayward PA, Larobina ME, Liskaser F, Matalanis G. Custodiol versus blood cardioplegia in complex cardiac operations: An Australian experience. Eur J Cardio-thoracic Surg. 2013;43: 526–531. doi: 10.1093/ejcts/ezs319 22665382

16. Wenger R, Kurtcuoglu V, Scholz C, Marti H, Hoogewijs D. Frequently asked questions in hypoxia research. Hypoxia. 2015; 35. doi: 10.2147/HP.S92198 27774480

17. Phan WL, Huang YT, Ma MC. Interleukin-27 Protects cardiomyocyte-like H9c2 cells against metabolic syndrome: Role of STAT3 signaling. Biomed Res Int. 2015;2015. doi: 10.1155/2015/689614 26339633

18. Lu FJ, Lin JT, Wang HP, Huang WC. A simple, sensitive, non-stimulated photon counting system for detection of superoxide anion in whole blood. Experientia. 1996;52: 141–144. doi: 10.1007/bf01923359 8608815

19. Gao CJ, Niu L, Ren PC, Wang W, Zhu C, Li YQ, et al. Hypoxic preconditioning attenuates global cerebral ischemic injury following asphyxial cardiac arrest through regulation of delta opioid receptor system. Neuroscience. 2012;202: 352–362. doi: 10.1016/j.neuroscience.2011.11.060 22200548

20. Huang CH, Hsu CY, Chen HW, Tsai MS, Cheng HJ, Chang CH, et al. Erythropoietin Improves the Postresuscitation Myocardial Dysfunction and Survival in the Asphyxia-Induced Cardiac Arrest Model. Shock. 2007;28: 53–58. doi: 10.1097/shk.0b013e31802f0218 17483742

21. Lin CS, Lee SH, Huang HS, Chen YS, Ma MC. H2O2 generated by NADPH oxidase 4 contributes to transient receptor potential vanilloid 1 channel-mediated mechanosensation in the rat kidney. Am J Physiol—Ren Physiol. 2015;309: F369–F376. doi: 10.1152/ajprenal.00462.2014 26136558

22. Huang HS, Ma MC. High sodium-induced oxidative stress and poor anticrystallization defense aggravate calcium oxalate crystal formation in rat hyperoxaluric kidneys. PLoS One. 2015;10: 1–19. doi: 10.1371/journal.pone.0134764 26241473

23. Ma MC, Wang BW, Yeh TP, Wu JL, Chung TH, Tsui K, et al. Interleukin-27, a novel cytokine induced by ischemia-reperfusion injury in rat hearts, mediates cardioprotective effects via the gp130/STAT3 pathway. Basic Res Cardiol. 2015;110: 22. doi: 10.1007/s00395-015-0480-y 25820907

24. Attaran RR, Ewy GA. Epinephrine in resuscitation: curse or cure? Future Cardiol. 2010;6: 473–482. doi: 10.2217/fca.10.24 20608820

25. Schemm R, Berger T, Schriefl C, Weihs W, Holzer M, Warenits A, et al. Epinephrine during CPR significantly increases organ perfusion in a rat VF cardiac arrest model. Resuscitation. Elsevier Ireland Ltd; 2018;130: e50. doi: 10.1016/j.resuscitation.2018.07.089

26. Piccirillo S, Castaldo P, MacRì ML, Amoroso S, Magi S. Glutamate as a potential “survival factor” in an in vitro model of neuronal hypoxia/reoxygenation injury: Leading role of the Na+/Ca2+ exchanger. Cell Death Dis. Springer US; 2018;9. doi: 10.1038/s41419-018-0784-6 29955038

27. Ku K, Oku H, Alam MS, Saitoh Y, Nosaka S, Nakayama K. Prolonged hypothermic cardiac storage with histidine-tryptophan-ketoglutarate solution: comparison with glucose-insulin-potassium and University of Wisconsin solutions. Transplantation. 1997;64: 971–975. Available: http://www.ncbi.nlm.nih.gov/pubmed/9381543 doi: 10.1097/00007890-199710150-00006 9381543

28. Cross JL, Meloni BP, Bakker AJ, Lee S, Knuckey NW. Modes of neuronal calcium entry and homeostasis following cerebral ischemia. Int J Alzheimers Dis. 2010;2010. doi: 10.4061/2010/316862 21052549

29. Halterman MW, Miller CC, Federoff HJ. Hypoxia-inducible factor-1alpha mediates hypoxia-induced delayed neuronal death that involves p53. J Neurosci. 1999;19: 6818–6824. Available: http://www.ncbi.nlm.nih.gov/pubmed/10436039 10436039

30. Suzuki H, Tomida A, Tsuruo T. Dephosphorylated hypoxia-inducible factor 1alpha as a mediator of p53-dependent apoptosis during hypoxia. Oncogene. 2001;20: 5779–5788. doi: 10.1038/sj.onc.1204742 11593383

31. Kleinschnitz C, Grund H, Wingler K, Armitage ME, Jones E, Mittal M, et al. Post-stroke inhibition of induced NADPH Oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biol. 2010;8. doi: 10.1371/journal.pbio.1000479 20877715

32. Katz L, Ebmeyer U, Safar P, Radovsky A, Neumar R. Outcome model of asphyxial cardiac arrest in rats. J Cereb Blood Flow Metab. 1995;15: 1032–1039. doi: 10.1038/jcbfm.1995.129 7593335

33. Casas AI, Geuss E, Kleikers PWM, Mencl S, Herrmann AM, Buendia I, et al. NOX4-dependent neuronal autotoxicity and BBB breakdown explain the superior sensitivity of the brain to ischemic damage. Proc Natl Acad Sci. 2017;114: 201705034. doi: 10.1073/pnas.1705034114 29087944

34. Ewy GA, Bobrow BJ. Cardiocerebral Resuscitation. J Intensive Care Med. 2016;31: 24–33. doi: 10.1177/0885066614544450 25077491

35. Callaway CW, Donnino MW, Fink EL, Geocadin RG, Golan E, Kern KB, et al. Part 8: Post–Cardiac Arrest Care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132: S465–S482. doi: 10.1161/CIR.0000000000000262 26472996

36. Chan CY, Chen YS, Lee HH, Huang HS, Lai YL, Chen CF, et al. Erythropoietin protects post-ischemic hearts by preventing extracellular matrix degradation: role of Jak2-ERK pathway. Life Sci. 2007;81: 717–723. doi: 10.1016/j.lfs.2007.07.013 17707437

37. Erbayraktar S, Grasso G, Sfacteria A, Xie Q -w., Coleman T, Kreilgaard M, et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci. 2003;100: 6741–6746. doi: 10.1073/pnas.1031753100 12746497

38. Hayashida K, Sano M, Kamimura N, Yokota T, Suzuki M, Ohta S, et al. Hydrogen inhalation during normoxic resuscitation improves neurological outcome in a rat model of cardiac arrest independently of targeted temperature management. Circulation. 2014;130: 2173–2180. doi: 10.1161/CIRCULATIONAHA.114.011848 25366995

39. Taccone FS, Crippa IA, Dell’Anna AM, Scolletta S. Neuroprotective strategies and neuroprognostication after cardiac arrest. Best Pract Res Clin Anaesthesiol. Elsevier Ltd; 2015;29: 451–464. doi: 10.1016/j.bpa.2015.08.005 26670816


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden