Research applications of primary biodiversity databases in the digital age
Autoři:
Joan E. Ball-Damerow aff001; Laura Brenskelle aff002; Narayani Barve aff002; Pamela S. Soltis aff002; Petra Sierwald aff001; Rüdiger Bieler aff001; Raphael LaFrance aff002; Arturo H. Ariño aff003; Robert P. Guralnick aff002
Působiště autorů:
Field Museum of Natural History, Chicago, IL, United States of America
aff001; Florida Museum of Natural History, University of Florida, Gainesville, FL, United States of America
aff002; Department of Environmental Biology, Universidad de Navarra, Pamplona, Spain
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0215794
Souhrn
Our world is in the midst of unprecedented change—climate shifts and sustained, widespread habitat degradation have led to dramatic declines in biodiversity rivaling historical extinction events. At the same time, new approaches to publishing and integrating previously disconnected data resources promise to help provide the evidence needed for more efficient and effective conservation and management. Stakeholders have invested considerable resources to contribute to online databases of species occurrences. However, estimates suggest that only 10% of biocollections are available in digital form. The biocollections community must therefore continue to promote digitization efforts, which in part requires demonstrating compelling applications of the data. Our overarching goal is therefore to determine trends in use of mobilized species occurrence data since 2010, as online systems have grown and now provide over one billion records. To do this, we characterized 501 papers that use openly accessible biodiversity databases. Our standardized tagging protocol was based on key topics of interest, including: database(s) used, taxa addressed, general uses of data, other data types linked to species occurrence data, and data quality issues addressed. We found that the most common uses of online biodiversity databases have been to estimate species distribution and richness, to outline data compilation and publication, and to assist in developing species checklists or describing new species. Only 69% of papers in our dataset addressed one or more aspects of data quality, which is low considering common errors and biases known to exist in opportunistic datasets. Globally, we find that biodiversity databases are still in the initial stages of data compilation. Novel and integrative applications are restricted to certain taxonomic groups and regions with higher numbers of quality records. Continued data digitization, publication, enhancement, and quality control efforts are necessary to make biodiversity science more efficient and relevant in our fast-changing environment.
Klíčová slova:
Biology and life sciences – Taxonomy – Plant taxonomy – Ecology – Biodiversity – Organisms – Eukaryota – Animals – Vertebrates – Invertebrates – Species interactions – Plant science – Computer and information sciences – Data management – Ecology and environmental sciences – Conservation science – Research and analysis methods – Database and informatics methods – Database searching
Zdroje
1. Beaman R, Cellinese N. Mass digitization of scientific collections: New opportunities to transform the use of biological specimens and underwrite biodiversity science. ZooKeys. 2012;209: 7–17. doi: 10.3897/zookeys.209.3313 22859875
2. Matsunaga A, Thompson A, Figueiredo RJ, Germain-Aubrey CC, Collins M, Beaman RS, et al. A Computational- and Storage-Cloud for Integration of Biodiversity Collections. 2013 IEEE 9th International Conference on e-Science. 2013. pp. 78–87. doi: 10.1109/eScience.2013.48
3. Sullivan BL, Aycrigg JL, Barry JH, Bonney RE, Bruns N, Cooper CB, et al. The eBird enterprise: an integrated approach to development and application of citizen science. Biol Conserv. 2014;169: 31–40.
4. Shaffer HB, Fisher RN, Davidson C. The role of natural history collections in documenting species declines. Trends Ecol Evol. 1998;13: 27–30. doi: 10.1016/S0169-5347(97)01177-4 21238186
5. Ristaino JB. Tracking historic migrations of the Irish potato famine pathogen, Phytophthora infestans. Microbes Infect. 2002;4: 1369–1377. doi: 10.1016/S1286-4579(02)00010-2 12443902
6. Suarez AV, Tsutsui ND. The Value of Museum Collections for Research and Society. BioScience. 2004;54: 66–74. doi: 10.1641/0006-3568(2004)054[0066:TVOMCF]2.0.CO;2
7. Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol. 2004;19: 497–503. doi: 10.1016/j.tree.2004.07.006 16701313
8. Pyke GH, Ehrlich PR. Biological collections and ecological/environmental research: a review, some observations and a look to the future. Biol Rev. 2010;85: 247–266. doi: 10.1111/j.1469-185X.2009.00098.x 19961469
9. Baird RC. Leveraging the fullest potential of scientific collections through digitisation. Biodivers Inform. 2010;7. doi: 10.17161/bi.v7i2.3987
10. GBIF [Internet]. [cited 5 Apr 2019]. Available: https://www.gbif.org/
11. Baker B. New Push to Bring US Biological Collections to the World’s Online Community Advances in technology put massive undertaking within reach. BioScience. 2011;61: 657–662. doi: 10.1525/bio.2011.61.9.4
12. Blagoderov V, Kitching I, Livermore L, Simonsen T, Smith V. No specimen left behind: industrial scale digitization of natural history collections. ZooKeys. 2012;209: 133–146. doi: 10.3897/zookeys.209.3178 22859884
13. Page LM, MacFadden BJ, Fortes JA, Soltis PS, Riccardi G. Digitization of Biodiversity Collections Reveals Biggest Data on Biodiversity. BioScience. 2015;65: 841–842. doi: 10.1093/biosci/biv104
14. Ariño AH. Approaches to estimating the universe of natural history collections data. Biodivers Inform. 2010;7. doi: 10.17161/bi.v7i2.3991
15. Ariño A. Putting your Finger upon the Simplest Data. Biodivers Inf Sci Stand. 2018;2: e26300. doi: 10.3897/biss.2.26300
16. Nelson G, Paul D, Riccardi G, Mast A. Five task clusters that enable efficient and effective digitization of biological collections. ZooKeys. 2012;209: 19–45. doi: 10.3897/zookeys.209.3135 22859876
17. Tulig M, Tarnowsky N, Bevans M, Kirchgessner A, Thiers B. Increasing the efficiency of digitization workflows for herbarium specimens. ZooKeys. 2012;209: 103–113. doi: 10.3897/zookeys.209.3125 22859882
18. Hudson LN, Blagoderov V, Heaton A, Holtzhausen P, Livermore L, Price BW, et al. Inselect: Automating the Digitization of Natural History Collections. PLOS ONE. 2015;10: e0143402. doi: 10.1371/journal.pone.0143402 26599208
19. Allan EL, Livermore L, Price B, Shchedrina O, Smith V. A Novel Automated Mass Digitisation Workflow for Natural History Microscope Slides. Biodivers Data J. 2019;7: e32342. doi: 10.3897/BDJ.7.e32342 30863197
20. Pimm SL, Jenkins CN, Abell R, Brooks TM, Gittleman JL, Joppa LN, et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science. 2014;344: 1246752. doi: 10.1126/science.1246752 24876501
21. Alroy J. Current extinction rates of reptiles and amphibians. Proc Natl Acad Sci. 2015;112: 13003–13008. doi: 10.1073/pnas.1508681112 26438855
22. Régnier C, Achaz G, Lambert A, Cowie RH, Bouchet P, Fontaine B. Mass extinction in poorly known taxa. Proc Natl Acad Sci. 2015;112: 7761–7766. doi: 10.1073/pnas.1502350112 26056308
23. Faith D, Collen B, Ariño A, Koleff PKP, Guinotte J, Kerr J, et al. Bridging the biodiversity data gaps: Recommendations to meet users’ data needs. Biodivers Inform. 2013;8. Available: https://journals.ku.edu/index.php/jbi/article/view/4126
24. Ariño AH, Chavan V, Faith DP. Assessment of user needs of primary biodiversity data: Analysis, concerns, and challenges. Biodivers Inform. 2013;8. doi: 10.17161/bi.v8i2.4094
25. Guralnick R, Hill A. Biodiversity informatics: automated approaches for documenting global biodiversity patterns and processes. Bioinformatics. 2009;25: 421–428. doi: 10.1093/bioinformatics/btn659 19129210
26. Sousa-Baena MS, Garcia LC, Peterson AT. Knowledge behind conservation status decisions: data basis for “Data Deficient” Brazilian plant species. Biol Conserv. 2014;173: 80–89.
27. Feeley K. Are We Filling the Data Void? An Assessment of the Amount and Extent of Plant Collection Records and Census Data Available for Tropical South America. PLOS ONE. 2015;10: 1–17. doi: 10.1371/journal.pone.0125629 25927831
28. Meyer C, Kreft H, Guralnick R, Jetz W. Global priorities for an effective information basis of biodiversity distributions. Nat Commun. 2015;6. doi: 10.1038/ncomms9221 26348291
29. Beck J, Ballesteros-Mejia L, Buchmann CM, Dengler J, Fritz SA, Gruber B, et al. What’s on the horizon for macroecology? Ecography. 2012;35: 673–683. doi: 10.1111/j.1600-0587.2012.07364.x
30. Beck J, Ballesteros-Mejia L, Nagel P, Kitching IJ. Online solutions and the Wallacean shortfall what does GBIF contribute to our knowledge of species ranges? Divers Distrib. 2013;19: 1043–1050.
31. Peterson AT, Asase A, Canhos D, Souza S de, Wieczorek J. Data Leakage and Loss in Biodiversity Informatics. Biodivers Data J. 2018;6: e26826. doi: 10.3897/BDJ.6.e26826 30473617
32. Daru BH, Park DS, Primack RB, Willis CG, Barrington DS, Whitfeld TJS, et al. Widespread sampling biases in herbaria revealed from large-scale digitization. New Phytol. 2018;217: 939–955. doi: 10.1111/nph.14855 29083043
33. Maldonado C, Molina CI, Zizka A, Persson C, Taylor CM, Alban J, et al. Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases? Glob Ecol Biogeogr. 2015;24: 973–984. doi: 10.1111/geb.12326 27656106
34. Meier R, Dikow T. Significance of Specimen Databases from Taxonomic Revisions for Estimating and Mapping the Global Species Diversity of Invertebrates and Repatriating Reliable Specimen Data. Conserv Biol. 2004;18: 478–488. doi: 10.1111/j.1523-1739.2004.00233.x
35. Goodwin ZA, Harris DJ, Filer D, Wood JRI, Scotland RW. Widespread mistaken identity in tropical plant collections. Curr Biol CB. 2015;25: R1066–1067. doi: 10.1016/j.cub.2015.10.002 26583892
36. Zermoglio PF, Guralnick RP, Wieczorek JR. A Standardized Reference Data Set for Vertebrate Taxon Name Resolution. PLOS ONE. 2016;11: e0146894. doi: 10.1371/journal.pone.0146894 26760296
37. Wieczorek J, Guo Q, Hijmans R. The point-radius method for georeferencing locality descriptions and calculating associated uncertainty. Int J Geogr Inf Sci. 2004;18: 745–767. doi: 10.1080/13658810412331280211
38. Dou L, Cao G, Morris PJ, Morris RA, Ludäscher B, Macklin JA, et al. Kurator: A Kepler package for data curation workflows. Procedia Comput Sci. 2012;9: 1614–1619. doi: 10.1016/j.procs.2012.04.177
39. Mathew C, Güntsch A, Obst M, Vicario S, Haines R, Williams A, et al. A semi-automated workflow for biodiversity data retrieval, cleaning, and quality control. Biodivers Data J. 2014;2: 1–12.
40. Ponder W, Carter G, Flemons P, R. Chapman R. Evaluation of Museum Collection Data for Use in Biodiversity Assessment. Conserv Biol. 2001;15. doi: 10.1046/j.1523-1739.2001.015003648.x
41. Boakes EH, McGowan PJ, Fuller RA, Chang-qing D, Clark NE, O’Connor K, et al. Distorted views of biodiversity: spatial and temporal bias in species occurrence data. PLOS Biol. 2010;8: e1000385. doi: 10.1371/journal.pbio.1000385 20532234
42. Isaac NJ, Strien AJ, August TA, Zeeuw MP, Roy DB. Statistics for citizen science: extracting signals of change from noisy ecological data. Methods Ecol Evol. 2014;5: 1052–1060.
43. Ruete A. Displaying bias in sampling effort of data accessed from biodiversity databases using ignorance maps. Biodivers Data J. 2015; 1–15.
44. Meyer C, Weigelt P, Kreft H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol Lett. 2016;19: 992–1006. doi: 10.1111/ele.12624 27250865
45. Meyer C, Jetz W, Guralnick RP, Fritz SA, Kreft H. Range geometry and socio-economics dominate species-level biases in occurrence information. Glob Ecol Biogeogr. 2016;25: 1181–1193. doi: 10.1111/geb.12483
46. Guralnick R, Van Cleve J. Strengths and weaknesses of museum and national survey data sets for predicting regional species richness: comparative and combined approaches. Divers Distrib. 2005;11: 349–359. doi: 10.1111/j.1366-9516.2005.00164.x
47. Ball-Damerow JE, Oboyski PT, Resh VH. California dragonfly and damselfly (Odonata) database: temporal and spatial distribution of species records collected over the past century. ZooKeys. 2015; 67.
48. Rapacciuolo G, Ball-Damerow JE, Zeilinger AR, Resh VH. Detecting long-term occupancy changes in Californian odonates from natural history and citizen science records. Biodivers Conserv. 2017;26: 2933–2949. doi: 10.1007/s10531-017-1399-4
49. Sierwald P, Bieler R, Shea EK, Rosenberg G. Mobilizing Mollusks: Status Update on Mollusk Collections in the U.S.A. and Canada. Am Malacol Bull. 2018;36: 177–214. doi: 10.4003/006.036.0202
50. ter Steege H, A. Persaud C. The phenology of Guyanese timber species—A compilation of a century of observations. Plant Ecol. 1991;95: 177–198. doi: 10.1007/BF00045216
51. Peterson CH. Relative abundances of living and dead molluscs in two Californian lagoons. Lethaia. 1976;9: 137–148. doi: 10.1111/j.1502-3931.1976.tb00958.x
52. Boag DA. Overcoming sampling bias in studies of terrestrial gastropods. Can J Zool. 1982;60: 1289–1292. doi: 10.1139/z82-173
53. Dorazio RM. Accounting for imperfect detection and survey bias in statistical analysis of presence-only data. Glob Ecol Biogeogr. 2014;23: 1472–1484. doi: 10.1111/geb.12216
54. Zeilinger AR, Rapacciuolo G, Turek D, Oboyski PT, Almeida RPP, Roderick GK. Museum specimen data reveal emergence of a plant disease may be linked to increases in the insect vector population. Ecol Appl Publ Ecol Soc Am. 2017;27: 1827–1837. doi: 10.1002/eap.1569 28459124
55. Chapman AD. Uses of Primary Species-Occurrence Data, version 1.0. Report for the Global Biodiversity Information Facility. [Internet]. Copenhagen; 2005. Available: Http://www.gbif.org/orc/?doc_id=1300.
56. Ariño A, Noesgaard D, Hjarding A, Schigel D. Biodiversity Information Services: A (not-so-) little knowledge that acts. Biodivers Inf Sci Stand. 2018;2: e25738. doi: 10.3897/biss.2.25738
57. Roy Rosenzweig Center for History and New Media. Zotero [Internet]. 2017. Available: www.zotero.org/download
58. Ball-Damerow JE, Brenskelle L, Barve N, LaFrance R, Soltis PS, Sierwald P, et al. Bibliographic dataset characterizing studies that use online biodiversity databases [Internet]. Zenodo; 2019. doi: 10.5281/zenodo.2589439
59. Ratnasingham S, Hebert PDN. bold: The Barcode of Life Data System (http://www.barcodinglife.org). Mol Ecol Notes. 2007;7: 355–364. doi: 10.1111/j.1471-8286.2007.01678.x 18784790
60. BOLDSystems v4 [Internet]. [cited 5 Apr 2019]. Available: http://www.boldsystems.org/
61. speciesLink: Sistema de Informação Distribuído para Coleções Biológicas [Internet]. 2019 [cited 8 Jun 2019]. Available: http://splink.cria.org.br/
62. Ocean Biogeographic Information System [Internet]. 2019 [cited 8 Jun 2019]. Available: https://obis.org/
63. AVH | The Australasian Virtual Herbarium [Internet]. [cited 8 Jun 2019]. Available: https://avh.chah.org.au/
64. Tropicos—Home [Internet]. 2019 [cited 8 Jun 2019]. Available: https://www.tropicos.org/
65. Froese R, Pauly D. FishBase. World Wide Web electronic publication. 2014; Available: https://www.scienceopen.com/document?vid=dc419213-0ca3-48cc-901c-2934ecf4441e
66. FishBase [Internet]. 2019 [cited 8 Jun 2019]. Available: https://www.fishbase.in/search.php
67. Hendrickson DA, Cohen AE. Fishes of Texas Project Database (Version 2.0) [Internet]. 1 Sep 2015 [cited 8 Jun 2019]. Available: http://www.fishesoftexas.org/documentation/
68. Collections of the REMIB [Internet]. [cited 8 Jun 2019]. Available: http://www.conabio.gob.mx/remib_ingles/doctos/remibnodosdb.html?
69. Chavan V, Penev L. The data paper: a mechanism to incentivize data publishing in biodiversity science. BMC Bioinformatics. 2011;12: S2. doi: 10.1186/1471-2105-12-S15-S2 22373175
70. Moritz T, Krishnan S, Roberts D, Ingwersen P, Agosti D, Penev L, et al. Towards mainstreaming of biodiversity data publishing: recommendations of the GBIF Data Publishing Framework Task Group. BMC Bioinformatics. 2011;12: S1. doi: 10.1186/1471-2105-12-S15-S1 22373150
71. Whitlock MC. Data archiving in ecology and evolution: best practices. Trends Ecol Evol. 2011;26: 61–65. doi: 10.1016/j.tree.2010.11.006 21159406
72. Smith V, Penev L. E-Infrastructures for Data Publishing in Biodiversity Science. PenSoft Publishers LTD; 2011.
73. Costello MJ, Michener WK, Gahegan M, Zhang Z-Q, Bourne PE. Biodiversity data should be published, cited, and peer reviewed. Trends Ecol Evol. 2013;28: 454–461. doi: 10.1016/j.tree.2013.05.002 23756105
74. Costello MJ, Wieczorek J. Best practice for biodiversity data management and publication. Biol Conserv. 2014;173: 68–73. doi: 10.1016/j.biocon.2013.10.018
75. Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data. 2016;3: 160018. doi: 10.1038/sdata.2016.18 26978244
76. Mooney H, Newton M. The Anatomy of a Data Citation: Discovery, Reuse, and Credit. J Librariansh Sch Commun. 2012;1: eP1035. doi: 10.7710/2162-3309.1035
77. Escribano N, Galicia D, Ariño AH. The tragedy of the biodiversity data commons: a data impediment creeping nigher? Database J Biol Databases Curation. 2018;2018. doi: 10.1093/database/bay033 29688384
78. Vines TH, Albert AYK, Andrew RL, Débarre F, Bock DG, Franklin MT, et al. The Availability of Research Data Declines Rapidly with Article Age. Curr Biol. 2014;24: 94–97. doi: 10.1016/j.cub.2013.11.014 24361065
79. Klump J, Huber R. 20 Years of Persistent Identifiers–Which Systems are Here to Stay? Data Sci J. 2017;16: 9. doi: 10.5334/dsj-2017-009
80. McMurry JA, Juty N, Blomberg N, Burdett T, Conlin T, Conte N, et al. Identifiers for the 21st century: How to design, provision, and reuse persistent identifiers to maximize utility and impact of life science data. PLOS Biol. 2017;15: e2001414. doi: 10.1371/journal.pbio.2001414 28662064
81. Stark PB. Before reproducibility must come preproducibility. Nature. 2018;557: 613. doi: 10.1038/d41586-018-05256-0 29795524
82. Cousijn H, Kenall A, Ganley E, Harrison M, Kernohan D, Lemberger T, et al. A data citation roadmap for scientific publishers. Sci Data. 2018;5: 180259. doi: 10.1038/sdata.2018.259 30457573
83. Force MM, Robinson NJ. Encouraging data citation and discovery with the Data Citation Index. J Comput Aided Mol Des. 2014;28: 1043–1048. doi: 10.1007/s10822-014-9768-5 24980647
84. Costello MJ, Appeltans W, Bailly N, Berendsohn WG, de Jong Y, Edwards M, et al. Strategies for the sustainability of online open-access biodiversity databases. Biol Conserv. 2014;173: 155–165.
85. Huang X, Hawkins BA, Qiao G. Biodiversity data sharing: Will peer-reviewed data papers work? BioScience. 2013;63: 5–6.
86. Pimm SL, Alibhai S, Bergl R, Dehgan A, Giri C, Jewell Z, et al. Emerging Technologies to Conserve Biodiversity. Trends Ecol Evol. 2015;30: 685–696. doi: 10.1016/j.tree.2015.08.008 26437636
87. Wood KR. Rediscovery, conservation status and taxonomic assessment of Melicope degeneri (Rutaceae), Kaua ‘i, Hawai ‘i. Endanger Species Res. 2011;14: 61–68.
88. Costello MJ. Motivating Online Publication of Data. BioScience. 2009;59: 418–427. doi: 10.1525/bio.2009.59.5.9
89. Costello MJ, Bouchet P, Boxshall G, Fauchald K, Gordon D, Hoeksema BW, et al. Global coordination and standardisation in marine biodiversity through the World Register of Marine Species (WoRMS) and related databases. PLOS ONE. 2013;8: e51629. doi: 10.1371/journal.pone.0051629 23505408
90. Tydecks L, Jeschke JM, Wolf M, Singer G, Tockner K. Spatial and topical imbalances in biodiversity research. PLOS ONE. 2018;13: e0199327. doi: 10.1371/journal.pone.0199327 29975719
91. Chapman AD. Numbers of Living Species in Australia and the World: A Report for the Australian Biological Resources Study [Internet]. Toowoomba, Australia: Australian Government Department of the Environment and Energy; 2009. Report No.: ISBN: 978 0 642 56861 8. Available: http://www.environment.gov.au/science/abrs/publications/other/numbers-living-species/contents#copyright
92. Sánchez‐Fernández D, Lobo JM, Abellán P, Ribera I, Millán A. Bias in freshwater biodiversity sampling: the case of Iberian water beetles. Divers Distrib. 2008;14: 754–762. doi: 10.1111/j.1472-4642.2008.00474.x
93. Ballesteros-Mejia L, Kitching IJ, Jetz W, Nagel P, Beck J. Mapping the biodiversity of tropical insects: species richness and inventory completeness of African sphingid moths. Glob Ecol Biogeogr. 2013;22: 586–595. doi: 10.1111/geb.12039
94. Costello MJ, Wilson S, Houlding B. Predicting total global species richness using rates of species description and estimates of taxonomic effort. Syst Biol. 2012;61: 871–883. doi: 10.1093/sysbio/syr080 21856630
95. Rosenberg G. A New Critical Estimate of Named Species-Level Diversity of the Recent Mollusca*. Am Malacol Bull. 2014;32: 308–322. doi: 10.4003/006.032.0204
96. Schuh RT, Hewson-Smith S, Ascher JS. Specimen databases: A case study in entomology using web-based software. Am Entomol. 2010;56: 206–216.
97. Mantle B, LaSalle J, Fisher N. Whole-drawer imaging for digital management and curation of a large entomological collection. ZooKeys. 2012;209: 147–163. doi: 10.3897/zookeys.209.3169 22859885
98. Holovachov O, Zatushevsky A, Shydlovsky I. Whole-Drawer Imaging of Entomological Collections: Benefits, Limitations and Alternative Applications. J Conserv Mus Stud. 2014;12: Art. 9. doi: 10.5334/jcms.1021218
99. Hereld M, Ferrier NJ, Agarwal N, Sierwald P. Designing a High-Throughput Pipeline for Digitizing Pinned Insects. 2017 IEEE 13th International Conference on e-Science (e-Science). 2017. pp. 542–550. doi: 10.1109/eScience.2017.88
100. Price BW, Dupont S, Allan EL, Blagoderov V, Butcher AJ, Durrant J, et al. ALICE: Angled Label Image Capture and Extraction for high throughput insect specimen digitisation. 2018; None
101. Hoffmann M, Hilton-Taylor C, Angulo A, Böhm M, Brooks TM, Butchart SHM, et al. The Impact of Conservation on the Status of the World’s Vertebrates. Science. 2010;330: 1503–1509. doi: 10.1126/science.1194442 20978281
102. Pino-del-Carpio A, Ariño AH, Miranda R. Data exchange gaps in knowledge of biodiversity: implications for the management and conservation of Biosphere Reserves. Biodivers Conserv. 2014;23: 2239–2258.
103. Pino-Del-Carpio A, Villarroya A, Ariño AH, Puig J, Miranda R. Communication gaps in knowledge of freshwater fish biodiversity: implications for the management and conservation of Mexican biosphere reserves. J Fish Biol. 2011;79: 1563–1591. doi: 10.1111/j.1095-8649.2011.03073.x 22136240
104. Ball J, Beche L, Mendez P, H. Resh V. Biodiversity in Mediterranean-climate streams of California. Hydrobiologia. 2013;719. doi: 10.1007/s10750-012-1368-6
105. Dewalt E, Favret C, W. Webb D. Just how imperiled are aquatic insects? A case study of stoneflies (Plecoptera) in Illinois. Ann Entomol Soc Am. 2005;98: 941–950. doi: 10.1603/0013-8746(2005)098[0941:JHIAAI]2.0.CO;2
106. Ball-Damerow JE, M’Gonigle LK, Resh VH. Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodivers Conserv. 2014;23: 2107–2126. doi: 10.1007/s10531-014-0707-5
107. Colla SR, Gadallah F, Richardson L, Wagner D, Gall L. Assessing declines of North American bumble bees (Bombus spp.) using museum specimens. Biodivers Conserv. 2012;21: 3585–3595.
108. Hallmann CA, Sorg M, Jongejans E, Siepel H, Hofland N, Schwan H, et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLOS ONE. 2017;12: e0185809. doi: 10.1371/journal.pone.0185809 29045418
109. Escribano N, Ariño AH, Galicia D. Biodiversity data obsolescence and land uses changes. PeerJ. 2016;4: 1–15.
110. Peterson AT, Soberón J, Krishtalka L. A global perspective on decadal challenges and priorities in biodiversity informatics. BMC Ecol. 2015;15: 15. doi: 10.1186/s12898-015-0046-8 26022532
111. Austin M, Van Niel K. Improving species distribution models for climate change studies: Variable selection and scale. J Biogeogr. 2010;38: 1–8. doi: 10.1111/j.1365-2699.2010.02416.x
112. Stanton JC, Pearson RG, Horning N, Ersts P, Reşit Akçakaya H. Combining static and dynamic variables in species distribution models under climate change. Methods Ecol Evol. 2012;3: 349–357.
113. Fournier A, Barbet-Massin M, Rome Q, Courchamp F. Predicting species distribution combining multi-scale drivers. Glob Ecol Conserv. 2017;12: 215–226. doi: 10.1016/j.gecco.2017.11.002
114. Staniczenko PPA, Sivasubramaniam P, Suttle KB, Pearson RG. Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks. Ecol Lett. 2017;20: 693–707. doi: 10.1111/ele.12770 28429842
115. Hinchliff CE, Smith SA, Allman JF, Burleigh JG, Chaudhary R, Coghill LM, et al. Synthesis of phylogeny and taxonomy into a comprehensive tree of life. Proc Natl Acad Sci. 2015;112: 12764–12769. doi: 10.1073/pnas.1423041112 26385966
116. Chavan V, Berents P, Hamer M. Towards demand driven publishing: approaches to the prioritisation of digitisation of natural history collections data. Biodivers Inform. 2010;7. doi: 10.17161/bi.v7i2.3990
117. Rios NE, Bart HL. GEOLocate. Belle Chasse, LA: Tulane University Museum of Natural History; 2018.
118. Boyle B, Hopkins N, Lu Z, Raygoza Garay JA, Mozzherin D, Rees T, et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics. 2013;14: 16. doi: 10.1186/1471-2105-14-16 23324024
119. Chamberlain SA, Szöcs E. taxize: taxonomic search and retrieval in R. F1000Research. 2013;2. doi: 10.12688/f1000research.2-191.v2 24555091
120. WoRMS Editorial Board. World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed yyyy-mm-dd. [Internet]. VLIZ; 2017. doi:10.14284/170
121. MilliBase [Internet]. [cited 5 Apr 2019]. Available: http://www.millibase.org/
122. MolluscaBase—Introduction [Internet]. [cited 5 Apr 2019]. Available: http://www.molluscabase.org/
123. Ball-Damerow JE, Mendez PK, Sierwald P, Bieler R, Yoder M, DeWalt RE. Taxonomic data quality in GBIF: a case study of aquatic macroinvertebrate groups. Ann Arbor, MI; 2017.
124. Wägele H, Klussmann-Kolb A, Kuhlmann M, Haszprunar G, Lindberg D, Koch A, et al. The taxonomist—an endangered race. A practical proposal for its survival. Front Zool. 2011;8: 25. doi: 10.1186/1742-9994-8-25 22029904
125. Drew LW. Are We Losing the Science of Taxonomy?: As need grows, numbers and training are failing to keep up. BioScience. 2011;61: 942–946. doi: 10.1525/bio.2011.61.12.4
126. Vaidya G, Lepage D, Guralnick R. The tempo and mode of the taxonomic correction process: How taxonomists have corrected and recorrected North American bird species over the last 127 years. PLoS ONE. 2018;13. doi: 10.1371/journal.pone.0195736 29672539
127. Arvanitidis CD, Warwick RM, Somerfield PJ, Pavloudi C, Pafilis E, Oulas A, et al. Research Infrastructures offer capacity to address scientific questions never attempted before: Are all taxa equal? [Internet]. PeerJ Inc.; 2018 Aug. Report No.: e26819v2. doi: 10.7287/peerj.preprints.26819v2
128. Otegui J, Guralnick RP. The geospatial data quality REST API for primary biodiversity data. Bioinformatics. 2016;32: 1755–1757. doi: 10.1093/bioinformatics/btw057 26833340
129. Paul D, Fisher N. Challenges For Implementing Collections Data Quality Feedback: synthesizing the community experience. Biodivers Inf Sci Stand. 2018;2: e26003. doi: 10.3897/biss.2.26003
Článek vyšel v časopise
PLOS One
2019 Číslo 9