Radiation hardness of cadmium telluride solar cells in proton therapy beam mode


Autoři: Shinhaeng Cho aff001;  Sang Hee Ahn aff002;  Ick Joon Cho aff001;  Yong Hyub Kim aff001;  Jae-Uk Jeong aff001;  Mee Sun Yoon aff001;  Sung-Ja Ahn aff001;  Woong-Ki Chung aff001;  Taek-Keun Nam aff001;  Ju-Young Song aff001
Působiště autorů: Department of Radiation Oncology, Chonnam National University Medical School, Gwangju, Korea aff001;  Proton Therapy Center, National Cancer Center, Goyang, Korea aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0221655

Souhrn

We evaluated the durability of cadmium telluride (CdTe) solar cells upon proton beam irradiation as well as the possibility of achieving a dosimeter usable in proton beam therapy by applying 100 MeV of pencil beam scanning (PBS) irradiation. Specifically, a 100 MeV proton PBS beam was applied at irradiation doses of 0, 1012, 1013, 1014, and 1015 cm-2. According to the results, the remaining factors (defined as the ratio of the degraded value to the initial value) of open-circuit voltage (Voc), short-circuit current (Jsc), fill-factor (FF), and efficiency (ƞ) which are solar cell performance parameters, were approximately 89%, 44%, 69%, and 30%, respectively, compared to those of the reference cell (without irradiation) at the highest dose of 1×1015 cm-2. In particular, the conversion efficiency, which is the main factor, was approximately 70% of that of the reference cell even at a high fluence of 1×1014 cm-2. In addition, we observed the projected range of the hydrogen atoms based on the PBS beam energy using the Tool for Particle Simulation software and assessed the amount of fluence accumulated in a CdTe cell. As the energy increased, the fluence accumulated inside the cell tended to decrease owing to the characteristics of the Bragg peak of the proton. Thus, the radiation damage to the cell induced by the proton beam was reduced. The results of this study are expected to provide valuable reference information for research on dosimetry sensors composed of thin-film solar cells, serving as the basis for future application in proton beam therapy with CdTe solar cells.

Klíčová slova:

Physical sciences – Physics – Nuclear physics – Nucleons – Protons – Electromagnetic radiation – Solar radiation – Mathematics – Statistics – Materials science – Materials – Amorphous solids – Glass – Chemistry – Chemical elements – Hydrogen – Engineering and technology – Energy and power – Alternative energy – Photovoltaic power – Medicine and health sciences – Oncology – Cancer treatment – Radiation therapy – Clinical oncology – Clinical medicine – Research and analysis methods – Mathematical and statistical techniques – Statistical methods


Zdroje

1. Hellweg CE, Baumstark-Khan C. Getting ready for the manned mission to Mars: The astronauts’ risk from space radiation. Naturwissenschaften. 2007;94: 517–526. doi: 10.1007/s00114-006-0204-0 17235598

2. Cardinaletti I, Vangerven T, Nagels S, Cornelissen R, Schreurs D, Hruby J, et al. Organic and perovskite solar cells for space applications. Sol Energy Mater Sol Cells. Elsevier B.V.; 2018;182: 121–127. doi: 10.1016/j.solmat.2018.03.024

3. Miyazawa Y, Ikegami M, Chen H-W, Ohshima T, Imaizumi M, Hirose K, et al. Tolerance of perovskite solar cell to high-energy particle irradiations in space environment. iScience. 2018;2:148–155. doi: 10.1016/j.isci.2018.03.020 30428371

4. Guo Q, Gao H, Zhang QM, Sailai M, Gao W, Zhao XF, et al. Effects of proton irradiation on upright metamorphic GaInP/GaInAs/Ge triple junction solar cells. Sol Energy Mater Sol Cells. 2018;185: 36–44. doi: 10.1016/j.solmat.2018.04.035

5. Krishnan S, Sanjeev G, Pattabi M, Mathew X. Effect of electron irradiation on the properties of CdTe/CdS solar cells. Sol Energy Mater Sol Cells. 2009;93: 2–5. doi: 10.1016/j.solmat.2007.12.002

6. Warasawa M, Tsunoda I, Takakura K, Hirose Y, Sugiyama M. Effects of proton irradiation on optical and electrical properties of Cu(In,Ga)Se 2 solar cells. Jpn J Appl Phys. 2013;51: 111802. doi: 10.7567/jjap.51.111802

7. Bätzner DL, Romeo A, Terheggen M, Döbeli M, Zogg H, Tiwari AN. Stability aspects in CdTe/CdS solar cells. Thin Solid Films. 2004;451–452: 536–543. doi: 10.1016/j.tsf.2003.10.141

8. Guanggen Z, Jingquan Z, Xulin H, Bing L, Lili W, Lianghuan F. The effect of irradiation on the mechanism of charge transport of CdTe solar cell. Conf Rec IEEE Photovolt Spec Conf. 2013; 2801–2804. doi: 10.1109/PVSC.2013.6745054

9. Chander S, Dhaka M. Time evolution to CdCl2 treatment on Cd-based solar cell devices fabricated by vapor evaporation. Sol Ener. 2017;150:577–583. doi: 10.1016/j.solener.2017.05.013

10. Chander S, Purohit A, Lal C, Dhaka MS. Enhancement of optical and structural properties of vacuum evaporated CdTe thin films. Mat Chem Phys. 2017;185:202e209. doi: 10.1016/j.matchemphys.2016.10.024

11. Yang G, Cho EW, Hwang YJ, Min BK, Kang Y, Kim D, et al. Radiation-hard and ultralightweight polycrystalline cadmium telluride thin-film solar cells for space applications. Energy Technol. 2016;4: 1463–1468. doi: 10.1002/ente.201600346

12. Lamb DA, Underwood CI, Barrioz V, Gwilliam R, Hall J, Baker MA, et al. Proton irradiation of CdTe thin film photovoltaics deposited on cerium-doped space glass. Prog Photovoltaics Res Appl. 2017;25: 1059–1067. doi: 10.1002/pip.2923

13. Kingsley JW, Pearson AJ, Harris L, Weston SJ, Lidzey DG. Detecting 6 MV X-rays using an organic photovoltaic device. Org Electron. 2009;10: 1170–1173. doi: 10.1016/j.orgel.2009.06.006

14. Kang J, Parsai EI, Albin D, Karpov VG, Shvydka D. From photovoltaics to medical imaging: Applications of thin-film CdTe in x-ray detection. Appl Phys Lett. 2008;93: 2006–2009. doi: 10.1063/1.3042212

15. Shulevich Y, Han Z, Zygmanski P, Menichelli D, Abkai C, Hesser J. Low-cost flexible thin-film detector for medical dosimetry applications. J Appl Clin Med Phys. 2017;15: 311–326. doi: 10.1120/jacmp.v15i2.4454 24710432

16. Zygmanski P, Mosurkal R, Elshahat B, Kumar J, Gill HS, Kokil A, et al. Flexible perovskite based X-ray detectors for dose monitoring in medical imaging applications. Phys Med. 2018. pp. 20–23. doi: 10.1016/j.ejmp.2018.05.016 29891090

17. Parsai EI, Shvydka D, Kang J. Design and optimization of large area thin-film CdTe detector for radiation therapy imaging applications. Med Phys. 2010;37: 3980–3994. doi: 10.1118/1.3438082

18. Lee B, Shin D, Yoo WJ, Jang KW, Shin SH. Fiber-optic Cerenkov radiation sensor for proton therapy dosimetry. Opt Express. 2012;20: 13907. doi: 10.1364/OE.20.013907 22714456

19. Son J, Kim M, Shin D, Hwang U, Lee S, Lim Y, et al. Development of a novel proton dosimetry system using an array of fiber-optic Cerenkov radiation sensors. Radiother Oncol. 2015;117: 501–504. doi: 10.1016/j.radonc.2015.07.045 26293200

20. Perl J, Shin J, Faddegon B, Paganetti H. TOPAS: An innovative proton Monte Carlo platform for research. Med Phys. 2012;39: 6818–6837. doi: 10.1118/1.4758060 23127075

21. Ahn SH, Lee N, Choi C, Shin SW, Han Y, Park HC. Feasibility study of Fe3O4/TaOx nanoparticles as a radiosensitizer for proton therapy. Phys Med Biol. 2018;63:114001. doi: 10.1088/1361-6560/aac27b 29726404

22. Jarlskog CZ, Paganetti H. Physics settings for using the Geant4 toolkit in proton therapy. IEEE Trans Nucl Sci. 2008;55: 1018–1025.

23. Batzner DL, Romeo A, Zogg H, Wendt R, Tiwari AN. Development of efficient and stable back contacts on CdTe/Cds solar cells. Thin Solid Films. 2001;387:151–154. doi: 10.1016/S0040-6090(01)00792-1

24. Rothemund R, Kreuzer S, Umundum T, Meinhardt G, Fromherz T. External quantum efficiency analysis of Si solar cells with II-VI nanocrystal luminescent down-shifting layers. Energy Procedia. 2011;10: 83–87. doi: 10.1016/j.egypro.2011.10.157

25. Cho S, Lee N, Song S, Son J, Kim H, Jeong JH, et al. Toward a novel dosimetry system using acrylic disk radiation sensor for proton pencil beam scanning. Med Phys. 2018;45. doi: 10.1002/mp.13149 30133716


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden