Prognostic nomogram predicts overall survival in pulmonary large cell neuroendocrine carcinoma


Autoři: Yanqi He aff001;  Han Liu aff002;  Shuai Wang aff003;  Yu Chen aff004
Působiště autorů: Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China aff001;  Department of Respiratory Medicine, the First Hospital of Jilin University, Changchun, China aff002;  Department of Vascular Surgery, the First Hospital of Jilin University, Changchun, China aff003;  Department of Cardiology, Hospital of The University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, China aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0223275

Souhrn

Background

Large cell neuroendocrine carcinoma (LCNEC) is a rare and typically aggressive malignancy with poor prognosis. This study developed a nomogram model to predict the overall survival (OS) of patients with LCNEC.

Methods

LCNEC patients were identified from the Surveillance, Epidemiology, and End Results database between 2004–2014. Univariate and multivariate Cox regression models were used to determine demographic and clinicopathological features associated with OS. A nomogram model was generated to predict OS and its performance was assessed by Harrell’s concordance index (C-index), calibration plots, and subgroup analysis by risk scores.

Results

Of 3048 eligible patients with LCNEC, 2138 were randomly grouped into the training set and 910 into the validation set. Age at diagnosis, gender, tumor stage, N stage, tumor size, and surgery of primary site were independent prognostic factors of OS. C-index values of the nomogram were 0.75 (95% CI, 0.74–0.76) and 0.76 (95% CI, 0.74–0.77) in the training and validation sets, respectively. In both cohorts, the calibration plots showed good concordance between the predicted and observed OS at 3 and 5 years. Kaplan-Meier curves revealed significant differences in OS in patients stratified by nomogram-based risk score, and patients with a higher-than-median risk score had poorer OS.

Conclusion

This is the first nomogram developed and validated in a large population-based cohort for predicting OS in patients with LCNEC, and it shows favorable discrimination and calibration abilities. Use of this proposed nomogram has the potential to improve prediction of survival risk, and lead to individualized clinical decisions for LCNEC.

Klíčová slova:

Cancer detection and diagnosis – Histology – Lung and intrathoracic tumors – Prognosis – Surgical and invasive medical procedures – Surgical oncology – Secondary lung tumors


Zdroje

1. Fasano M, Della Corte CM, Papaccio F, Ciardiello F, Morgillo F. Pulmonary Large-Cell Neuroendocrine Carcinoma: From Epidemiology to Therapy. J Thorac Oncol. 2015;10(8):1133–41. Epub 2015/06/04. doi: 10.1097/JTO.0000000000000589 26039012; PubMed Central PMCID: PMC4503246.

2. Varlotto JM, Medford-Davis LN, Recht A, Flickinger JC, Schaefer E, Zander DS, et al. Should large cell neuroendocrine lung carcinoma be classified and treated as a small cell lung cancer or with other large cell carcinomas? J Thorac Oncol. 2011;6(6):1050–8. Epub 2011/05/14. doi: 10.1097/JTO.0b013e318217b6f8 21566535.

3. Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J Thorac Oncol. 2015;10(9):1243–60. Epub 2015/08/21. doi: 10.1097/JTO.0000000000000630 26291008.

4. Sanchez de Cos Escuin J. Diagnosis and treatment of neuroendocrine lung tumors. Arch Bronconeumol. 2014;50(9):392–6. Epub 2014/04/02. doi: 10.1016/j.arbres.2014.02.004 24685201.

5. Kujtan L, Muthukumar V, Kennedy KF, Davis JR, Masood A, Subramanian J. The Role of Systemic Therapy in the Management of Stage I Large Cell Neuroendocrine Carcinoma of the Lung. J Thorac Oncol. 2018;13(5):707–14. Epub 2018/02/03. doi: 10.1016/j.jtho.2018.01.019 29391287.

6. Ishii H, Azuma K, Kawahara A, Yamada K, Imamura Y, Tokito T, et al. Significance of programmed cell death-ligand 1 expression and its association with survival in patients with small cell lung cancer. J Thorac Oncol. 2015;10(3):426–30. Epub 2014/11/11. doi: 10.1097/JTO.0000000000000414 25384063.

7. Travis WD, Giroux DJ, Chansky K, Crowley J, Asamura H, Brambilla E, et al. The IASLC Lung Cancer Staging Project: proposals for the inclusion of broncho-pulmonary carcinoid tumors in the forthcoming (seventh) edition of the TNM Classification for Lung Cancer. J Thorac Oncol. 2008;3(11):1213–23. Epub 2008/11/04. doi: 10.1097/JTO.0b013e31818b06e3 18978555.

8. Cattoni M, Vallieres E, Brown LM, Sarkeshik AA, Margaritora S, Siciliani A, et al. Improvement in TNM staging of pulmonary neuroendocrine tumors requires histology and regrouping of tumor size. J Thorac Cardiovasc Surg. 2018;155(1):405–13. Epub 2017/10/08. doi: 10.1016/j.jtcvs.2017.08.102 28986041.

9. Yang Q, Xu Z, Chen X, Zheng L, Yu Y, Zhao X, et al. Clinicopathological characteristics and prognostic factors of pulmonary large cell neuroendocrine carcinoma: A large population-based analysis. Thorac Cancer. 2019. Epub 2019/02/09. doi: 10.1111/1759-7714.12993 30734490.

10. Iasonos A, Schrag D, Raj GV, Panageas KS. How to build and interpret a nomogram for cancer prognosis. J Clin Oncol. 2008;26(8):1364–70. Epub 2008/03/08. doi: 10.1200/JCO.2007.12.9791 18323559.

11. Balachandran VP, Gonen M, Smith JJ, DeMatteo RP. Nomograms in oncology: more than meets the eye. Lancet Oncol. 2015;16(4):e173–80. Epub 2015/04/08. doi: 10.1016/S1470-2045(14)71116-7 25846097; PubMed Central PMCID: PMC4465353.

12. Hirabayashi S, Kosugi S, Isobe Y, Nashimoto A, Oda I, Hayashi K, et al. Development and external validation of a nomogram for overall survival after curative resection in serosa-negative, locally advanced gastric cancer. Ann Oncol. 2014;25(6):1179–84. Epub 2014/03/29. doi: 10.1093/annonc/mdu125 24669009.

13. Xie K, Liu S, Liu J. Nomogram predicts survival benefit for non- metastatic esophageal cancer patients who underwent preoperative radiotherapy. Cancer Manag Res. 2018;10:3657–68. Epub 2018/10/03. doi: 10.2147/CMAR.S165168 30271214; PubMed Central PMCID: PMC6152601.

14. Noone AM HN, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975–2015, National Cancer Institute. Bethesda, MD, https://seer.cancer.gov/csr/1975_2015/, based on November 2017 SEER data submission, posted to the SEER web site, April 2018.

15. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence—SEER 9 Regs Research Data, Nov 2017 Sub (1973–2015) <Katrina/Rita Population Adjustment>—Linked To County Attributes—Total U.S., 1969–2016 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, released April 2018, based on the November 2017 submission.

16. Alba AC, Agoritsas T, Walsh M, Hanna S, Iorio A, Devereaux PJ, et al. Discrimination and Calibration of Clinical Prediction Models: Users' Guides to the Medical Literature. JAMA. 2017;318(14):1377–84. Epub 2017/10/20. doi: 10.1001/jama.2017.12126 29049590.

17. Zhang J, Gold KA, Lin HY, Swisher SG, Xing Y, Lee JJ, et al. Relationship between tumor size and survival in non-small-cell lung cancer (NSCLC): an analysis of the surveillance, epidemiology, and end results (SEER) registry. J Thorac Oncol. 2015;10(4):682–90. Epub 2015/01/16. doi: 10.1097/JTO.0000000000000456 25590605; PubMed Central PMCID: PMC4368494.

18. Scosyrev E, Messing J, Noyes K, Veazie P, Messing E. Surveillance Epidemiology and End Results (SEER) program and population-based research in urologic oncology: an overview. Urol Oncol. 2012;30(2):126–32. Epub 2010/04/07. doi: 10.1016/j.urolonc.2009.11.005 20363162.

19. Iyoda A, Hiroshima K, Moriya Y, Sekine Y, Shibuya K, Iizasa T, et al. Prognostic impact of large cell neuroendocrine histology in patients with pathologic stage Ia pulmonary non-small cell carcinoma. J Thorac Cardiovasc Surg. 2006;132(2):312–5. Epub 2006/07/29. doi: 10.1016/j.jtcvs.2006.02.046 16872955.

20. Kim KW, Kim HK, Kim J, Shim YM, Ahn MJ, Choi YL. Outcomes of Curative-Intent Surgery and Adjuvant Treatment for Pulmonary Large Cell Neuroendocrine Carcinoma. World J Surg. 2017;41(7):1820–7. Epub 2017/02/17. doi: 10.1007/s00268-017-3908-8 28204910.

21. Asamura H, Kameya T, Matsuno Y, Noguchi M, Tada H, Ishikawa Y, et al. Neuroendocrine neoplasms of the lung: a prognostic spectrum. J Clin Oncol. 2006;24(1):70–6. Epub 2005/12/31. doi: 10.1200/JCO.2005.04.1202 16382115.

22. Zhao Y, Castonguay M, Wilke D, Xu Z, Plourde M, Mulroy L, et al. Treatment outcomes and incidence of brain metastases in pulmonary large cell neuroendocrine carcinoma. Curr Probl Cancer. 2019;43(1):54–65. Epub 2018/08/16. doi: 10.1016/j.currproblcancer.2018.05.006 30107896.

23. Derks JL, Hendriks LE, Buikhuisen WA, Groen HJ, Thunnissen E, van Suylen RJ, et al. Clinical features of large cell neuroendocrine carcinoma: a population-based overview. Eur Respir J. 2016;47(2):615–24. Epub 2015/11/07. doi: 10.1183/13993003.00618-2015 26541538.

24. Sun JM, Ahn MJ, Ahn JS, Um SW, Kim H, Kim HK, et al. Chemotherapy for pulmonary large cell neuroendocrine carcinoma: similar to that for small cell lung cancer or non-small cell lung cancer? Lung Cancer. 2012;77(2):365–70. Epub 2012/05/15. doi: 10.1016/j.lungcan.2012.04.009 22579297.

25. Clinical Lung Cancer Genome P, Network Genomic M. A genomics-based classification of human lung tumors. Sci Transl Med. 2013;5(209):209ra153. Epub 2013/11/01. doi: 10.1126/scitranslmed.3006802 24174329; PubMed Central PMCID: PMC4006630.

26. Rekhtman N, Pietanza MC, Hellmann MD, Naidoo J, Arora A, Won H, et al. Next-Generation Sequencing of Pulmonary Large Cell Neuroendocrine Carcinoma Reveals Small Cell Carcinoma-like and Non-Small Cell Carcinoma-like Subsets. Clin Cancer Res. 2016;22(14):3618–29. Epub 2016/03/11. doi: 10.1158/1078-0432.CCR-15-2946 26960398; PubMed Central PMCID: PMC4995776.

27. George J F-CL, Vonn W, Hayes N, Thomas RK. Comparative analysis of small cell lung cancer and other pulmonary neuroendocrine tumors. Cancer Res. 2016;76(14 suppl):122.

28. Derks JL, Leblay N, Thunnissen E, van Suylen RJ, den Bakker M, Groen HJM, et al. Molecular Subtypes of Pulmonary Large-cell Neuroendocrine Carcinoma Predict Chemotherapy Treatment Outcome. Clin Cancer Res. 2018;24(1):33–42. Epub 2017/10/27. doi: 10.1158/1078-0432.CCR-17-1921 29066508.

29. Dowlati A, Lipka MB, McColl K, Dabir S, Behtaj M, Kresak A, et al. Clinical correlation of extensive-stage small-cell lung cancer genomics. Ann Oncol. 2016;27(4):642–7. Epub 2016/01/24. doi: 10.1093/annonc/mdw005 26802149; PubMed Central PMCID: PMC4803453.

30. Senderovitz T, Skov BG, Hirsch FR. Neuroendocrine characteristics in malignant lung tumors: implications for diagnosis, treatment, and prognosis. Cancer Treat Res. 1995;72:143–54. Epub 1995/01/01. doi: 10.1007/978-1-4615-2630-8_7 7702985.

31. Hu ZG, Li WX, Ruan YS, Zeng FJ. Incidence trends and risk prediction nomogram of metachronous second primary lung cancer in lung cancer survivors. PLoS One. 2018;13(12):e0209002. Epub 2018/12/18. doi: 10.1371/journal.pone.0209002 30557376; PubMed Central PMCID: PMC6296553.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden