Anatomical connections underlying personally-familiar face processing
Autoři:
Daylín Góngora aff001; Ana Maria Castro-Laguardia aff001; Johanna Pérez aff003; Pedro Valdés-Sosa aff001; Maria A. Bobes aff001
Působiště autorů:
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
aff001; Department of Cognitive Neuroscience, Cuban Neuroscience Center, Havana, Havana, Cuba
aff002; Department of Neuroinformatic, Cuban Neuroscience Center, Havana, Havana, Cuba
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222087
Souhrn
Familiar face processing involves face specific regions (the core face system) as well as other non-specific areas related to processing of person-related information (the extended face system). The connections between core and extended face system areas must be critical for face recognition. Some studies have explored the connectivity pattern of unfamiliar face responding area, but none have explored those areas related to face familiarity processing in the extended system. To study these connections, diffusion weighted imaging with probabilistic tractography was used to estimate the white-matter pathways between core and extended system regions, which were defined from functional magnetic resonance imaging responses to personally-familiar faces. Strong white matter connections were found between occipitotemporal face areas (OFA/FFA) with superior temporal sulcus and insula suggesting the possible existence of direct anatomical connections from face-specific areas to frontal nodes that could underlay the processing of emotional information associated to familiar faces.
Klíčová slova:
Biology and life sciences – Neuroscience – Cognitive science – Cognition – Memory – Face recognition – Cognitive psychology – Perception – Learning and memory – Brain mapping – Brain morphometry – Diffusion tensor imaging – Tractography – Functional magnetic resonance imaging – Neuroimaging – Psychology – Emotions – Anatomy – Head – Face – Brain – Cerebral hemispheres – Left hemisphere – Right hemisphere – Nervous system – Central nervous system – Social sciences – Medicine and health sciences – Diagnostic medicine – Diagnostic radiology – Magnetic resonance imaging – Radiology and imaging – Research and analysis methods – Imaging techniques
Zdroje
1. Gobbini MI, Haxby JV. Neural systems for recognition of familiar faces. Neuropsychologia. 2007;45(1):32–41. doi: 10.1016/j.neuropsychologia.2006.04.015 16797608
2. Haxby JV, Hoffman EA, Gobbini MI. Human neural systems for face recognition and social communication. Biological psychiatry. 2002;51(1):59–67. doi: 10.1016/s0006-3223(01)01330-0 11801231
3. Pyles JA, Verstynen TD, Schneider W, Tarr MJ. Explicating the face perception network with white matter connectivity. PloS one. 2013;8(4):e61611. doi: 10.1371/journal.pone.0061611 23630602
4. Kanwisher N, Yovel G. The fusiform face area: a cortical region specialized for the perception of faces. Philosophical Transactions of the Royal Society B: Biological Sciences. 2006;361(1476):2109–28. doi: 10.1098/rstb.2006.1934 17118927
5. Kanwisher N, McDermott J, Chun MM. The fusiform face area: a module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience. 1997;17(11):4302–11. 9151747
6. Haxby JV, Hoffman EA, Gobbini MI. The distributed human neural system for face perception. Trends in cognitive sciences. 2000;4(6):223–33. 10827445
7. Ishai A, Schmidt CF, Boesiger P. Face perception is mediated by a distributed cortical network. Brain research bulletin. 2005;67(1):87–93.
8. Bernard FA, Bullmore ET, Graham KS, Thompson SA, Hodges JR, Fletcher PC. The hippocampal region is involved in successful recognition of both remote and recent famous faces. Neuroimage. 2004;22(4):1704–14. doi: 10.1016/j.neuroimage.2004.03.036 15275926
9. Seubert J, Kellermann T, Loughead J, Boers F, Brensinger C, Schneider F, et al. Processing of disgusted faces is facilitated by odor primes: a functional MRI study. Neuroimage. 2010;53(2):746–56. doi: 10.1016/j.neuroimage.2010.07.012 20627130
10. Breiter HC, Etcoff NL, Whalen PJ, Kennedy WA, Rauch SL, Buckner RL, et al. Response and habituation of the human amygdala during visual processing of facial expression. Neuron. 1996;17(5):875–87. doi: 10.1016/s0896-6273(00)80219-6 8938120
11. Fairhall SL, Ishai A. Effective connectivity within the distributed cortical network for face perception. Cerebral cortex. 2007;17(10):2400–6. doi: 10.1093/cercor/bhl148 17190969
12. Ishai A. Let’s face it: it’sa cortical network. Neuroimage. 2008;40(2):415–9. doi: 10.1016/j.neuroimage.2007.10.040 18063389
13. Haxby JV, Gobbini MI. Distributed Neural Systems for Face Perception. Oxford Handbook of Face Perception. 2011:93.
14. Haxby JV, Horwitz B, Ungerleider LG, Maisog JM, Pietrini P, Grady CL. The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. The Journal of Neuroscience. 1994;14(11):6336–53.
15. Bobes MA, Góngora D, Valdes A, Santos Y, Acosta Y, Fernandez-Garcia Y, et al. Testing the connections within face processing circuitry in Capgras delusion with diffusion imaging tractography. NeuroImage: Clinical. 2016.
16. Góngora D, Iglesias-Fuster J, Martínez Y, Estevez N, Bobes M. Age-related Changes in White Matter Tracts Associated with Face Recognition System. Revista Neuropsicología, Neuropsiquiatría y Neurociencias. 2016;16(3):35–52.
17. Thomas C, Moya L, Avidan G, Humphreys K, Jung KJ, Peterson MA, et al. Reduction in white matter connectivity, revealed by diffusion tensor imaging, may account for age-related changes in face perception. Journal of Cognitive Neuroscience. 2008;20(2):268–84. doi: 10.1162/jocn.2008.20025 18275334
18. Mori S, Wakana S, Van Zijl PC, Nagae-Poetscher L. MRI atlas of human white matter: Elsevier; 2005.
19. Crosby EC. Correlative anatomy of the nervous system: Macmillan; 1962.
20. Gloor P. The temporal lobe and limbic system: Oxford University Press, USA; 1997.
21. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage. 2002;17(1):77–94. 12482069
22. Dejerine JJ. Anatomie des centres nerveux: Rueff; 1895.
23. Behrens TE, Woolrich MW, Jenkinson M, Johansen‐Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion‐weighted MR imaging. Magnetic resonance in medicine. 2003;50(5):1077–88. doi: 10.1002/mrm.10609 14587019
24. Yo T-S, Anwander A, KnAusche T, editors. Fiber cup 2009: Reconstructing fibers from the phantom data. MICCAI workshop on Diffusion Modelling and the Fiber Cup (DMFC’09), London, United Kingdom; 2009.
25. Gschwind M, Pourtois G, Schwartz S, Van De Ville D, Vuilleumier P. White-matter connectivity between face-responsive regions in the human brain. Cerebral cortex. 2012;22(7):1564–76. doi: 10.1093/cercor/bhr226 21893680
26. Weiner KS, Grill-Spector K. The improbable simplicity of the fusiform face area. Trends in cognitive sciences. 2012;16(5):251–4. doi: 10.1016/j.tics.2012.03.003 22481071
27. W.M. O. Declaration of Helsinki (1964). BMJ. 1996;(313):1448–9.
28. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, et al. The WU-Minn human connectome project: an overview. 2013;80:62–79. doi: 10.1016/j.neuroimage.2013.05.041 23684880
29. Friston KJ, Ashburner J, Kiebel SJ, Nichols T, Penny W. Statistical Parametric Mapping. 2007.
30. Diedrichsen J, Shadmehr R. Detecting and adjusting for artifacts in fMRI time series data. Neuroimage. 2005;27(3):624–34. doi: 10.1016/j.neuroimage.2005.04.039 15975828
31. Brett M, Anton J, Valabregue R, Pioline J. Region of interest analysis using an SPM toolbox [abstract] Presented at the 8th Internation Conference on Functional Mapping of the Human Brain,. Available on CD-ROM in NeuroImage. NeuroImage. 2002;16.
32. The MathWorks I. MATLAB 2014a. 2014.
33. Collignon A, Maes F, Delaere D, Vandermeulen D, Suetens P, Marchal G, editors. Automated multi-modality image registration based on information theory. Information processing in medical imaging; 1995.
34. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. 2002;15(1):273–89. doi: 10.1006/nimg.2001.0978 11771995
35. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–S19. doi: 10.1016/j.neuroimage.2004.07.051 15501092
36. Woolrich MW, Jbabdi S, Patenaude B, Chappell M, Makni S, Behrens T, et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage. 2009;45(1):S173–S86.
37. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62(2):782–90. doi: 10.1016/j.neuroimage.2011.09.015 21979382
38. Smith SM. Fast robust automated brain extraction. Human brain mapping. 2002;17(3):143–55. doi: 10.1002/hbm.10062 12391568
39. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? Neuroimage. 2007;34(1):144–55. doi: 10.1016/j.neuroimage.2006.09.018 17070705
40. Groppe DM, Urbach TP, Kutas M. Mass univariate analysis of event‐related brain potentials/fields II: Simulation studies. Psychophysiology. 2011;48(12):1726–37. doi: 10.1111/j.1469-8986.2011.01272.x 21895684
41. Groppe DM, Urbach TP, Kutas M. Mass univariate analysis of event‐related brain potentials/fields I: A critical tutorial review. Psychophysiology. 2011;48(12):1711–25. doi: 10.1111/j.1469-8986.2011.01273.x 21895683
42. StatSoft I. STATISTICA (data analysis software system), version 10. 2011.
43. Zalesky A, Fornito A, Harding IH, Cocchi L, Yücel M, Pantelis C, et al. Whole-brain anatomical networks: does the choice of nodes matter? Neuroimage. 2010;50(3):970–83. doi: 10.1016/j.neuroimage.2009.12.027 20035887
44. Lazar M. Mapping brain anatomical connectivity using white matter tractography. NMR in Biomedicine. 2010;23(7):821–35. doi: 10.1002/nbm.1579 20886567
45. Calabrese E, Badea A, Cofer G, Qi Y, Johnson GA. A diffusion MRI tractography connectome of the mouse brain and comparison with neuronal tracer data. Cerebral cortex. 2015;25(11):4628–37. doi: 10.1093/cercor/bhv121 26048951
46. Davis T, LaRocque KF, Mumford JA, Norman KA, Wagner AD, Poldrack RAJN. What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis. 2014;97:271–83.
47. Thirion B, Pinel P, Tucholka A, Roche A, Ciuciu P, Mangin J-F, et al. Structural analysis of fMRI data revisited: improving the sensitivity and reliability of fMRI group studies. J IEEE Transactions on Medical Imaging. 2007;26(9):1256–69.
48. Rossion B, Caldara R, Seghier M, Schuller AM, Lazeyras F, Mayer E. A network of occipito‐temporal face‐sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain. 2003;126(11):2381–95.
49. Gainotti G. Implications of recent findings for current cognitive models of familiar people recognition. J Neuropsychologia. 2015;77:279–87.
50. Borghesani V, Narvid J, Battistella G, Shwe W, Watson C, Binney RJ, et al. “Looks familiar, but I do not know who she is”: The role of the anterior right temporal lobe in famous face recognition. 2019;115:72–85.
51. Chao LL, Martin A, Haxby JV. Are face‐responsive regions selective only for faces? Neuroreport. 1999;10(14):2945–50. doi: 10.1097/00001756-199909290-00013 10549802
52. Halgren E, Dale AM, Sereno MI, Tootell RB, Marinkovic K, Rosen BR. Location of human face-selective cortex with respect to retinotopic areas. Human brain mapping. 1999;7(1):29–37. 9882088
53. Osher DE, Saxe RR, Koldewyn K, Gabrieli JD, Kanwisher N, Saygin ZM. Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cerebral Cortex. 2015:bhu303.
54. Rotshtein P, Henson RN, Treves A, Driver J, Dolan RJ. Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nature neuroscience. 2005;8(1):107–13. doi: 10.1038/nn1370 15592463
55. Liu J, Harris A, Kanwisher N. Perception of face parts and face configurations: an fMRI study. Journal of Cognitive Neuroscience. 2010;22(1):203–11. doi: 10.1162/jocn.2009.21203 19302006
56. Ethofer T, Bretscher J, Wiethoff S, Bisch J, Schlipf S, Wildgruber D, et al. Functional responses and structural connections of cortical areas for processing faces and voices in the superior temporal sulcus. Neuroimage. 2013;76:45–56. doi: 10.1016/j.neuroimage.2013.02.064 23507387
57. Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science. 2001;293(5539):2425–30. doi: 10.1126/science.1063736 11577229
58. Bobes MA, Castellanos AL, Quiñones I, García L, Valdes-Sosa M. Timing and tuning for familiarity of cortical responses to faces. PloS one. 2013;8(10):e76100. doi: 10.1371/journal.pone.0076100 24130761
59. di Oleggio Castello MV, Halchenko YO, Guntupalli JS, Gors JD, Gobbini MI. The neural representation of personally familiar and unfamiliar faces in the distributed system for face perception. Scientific reports. 2017;7(1):12237. doi: 10.1038/s41598-017-12559-1 28947835
60. Alves NT, Fukusima SS, Aznar-Casanova JAJP, Neuroscience. Models of brain asymmetry in emotional processing. 2008;1(1):63–6.
61. Gainotti GJN. Emotions, unconscious processes, and the right hemisphere. 2005;7(1):71–81.
62. Leibenluft E, Gobbini MI, Harrison T, Haxby JVJBp. Mothers' neural activation in response to pictures of their children and other children. 2004;56(4):225–32. doi: 10.1016/j.biopsych.2004.05.017 15312809
63. Taylor MJ, Arsalidou M, Bayless SJ, Morris D, Evans JW, Barbeau EJJHbm. Neural correlates of personally familiar faces: parents, partner and own faces. 2009;30(7):2008–20. doi: 10.1002/hbm.20646 18726910
64. Morris DM, Embleton KV, Parker GJ. Probabilistic fibre tracking: differentiation of connections from chance events. Neuroimage. 2008;42(4):1329–39. doi: 10.1016/j.neuroimage.2008.06.012 18619548
65. Vogt BA, Vogt L, Laureys S. Cytology and functionally correlated circuits of human posterior cingulate areas. Neuroimage. 2006;29(2):452–66. doi: 10.1016/j.neuroimage.2005.07.048 16140550
66. Platek SM, Loughead JW, Gur RC, Busch S, Ruparel K, Phend N, et al. Neural substrates for functionally discriminating self‐face from personally familiar faces. Human brain mapping. 2006;27(2):91–8. doi: 10.1002/hbm.20168 16035037
67. Gobbini MI, Haxby JV. Neural response to the visual familiarity of faces. Brain research bulletin. 2006;71(1):76–82.
68. Mitchell JP, Heatherton TF, Macrae CN. Distinct neural systems subserve person and object knowledge. Proceedings of the National Academy of Sciences. 2002;99(23):15238–43.
69. Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biological psychiatry. 2003;54(5):504–14. doi: 10.1016/s0006-3223(03)00168-9 12946879
70. Singer T, Seymour B, O'doherty J, Kaube H, Dolan RJ, Frith CD. Empathy for pain involves the affective but not sensory components of pain. Science. 2004;303(5661):1157–62. doi: 10.1126/science.1093535 14976305
71. Posner MI, Rothbart MK. Attention, self–regulation and consciousness. Philosophical Transactions of the Royal Society B: Biological Sciences. 1998;353(1377):1915–27.
72. Kosaka H, Omori M, Iidaka T, Murata T, Shimoyama T, Okada T, et al. Neural substrates participating in acquisition of facial familiarity: an fMRI study. Neuroimage. 2003;20(3):1734–42. 14642483
73. Heller R, Golland Y, Malach R, Benjamini Y. Conjunction group analysis: an alternative to mixed/random effect analysis. Neuroimage. 2007;37(4):1178–85. doi: 10.1016/j.neuroimage.2007.05.051 17689266
74. Frässle S, Krach S, Paulus FM, Jansen A. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing. Scientific reports. 2016;6:27153. doi: 10.1038/srep27153 27250879
75. Barton JJ. Prosopagnosia associated with a left occipitotemporal lesion. Neuropsychologia. 2008;46(8):2214–24.
76. Mattson AJ, Levin HS, Grafman J. A case of prosopagnosia following moderate closed head injury with left hemisphere focal lesion. Cortex. 2000;36(1):125–37. 10728902
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Proč jsou nemocnice nepřítelem spánku? A jak to změnit?
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?