Effects of a rifampicin pre-treatment on linezolid pharmacokinetics


Autoři: Fumiyasu Okazaki aff001;  Yasuhiro Tsuji aff002;  Yoshihiro Seto aff001;  Chika Ogami aff001;  Yoshihiro Yamamoto aff003;  Hideto To aff001
Působiště autorů: Department of Medical Pharmaceutics, Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan aff001;  Center for Pharmacist Education, School of Pharmacy, Nihon University, Chiba, Japan aff002;  Department of Clinical Infectious Diseases, Graduate School of Medicine and Pharmaceutical Sciences for Research University of Toyama, Toyama, Japan aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0214037

Souhrn

Linezolid is an oxazolidinone antibiotic that effectively treats methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). Since rifampicin induces other antibiotic effects, it is combined with linezolid in therapeutic regimes. However, linezolid blood concentrations are reduced by this combination, which increases the risk of the emergence of antibiotic-resistant bacteria. We herein demonstrated that the combination of linezolid with rifampicin inhibited its absorption and promoted its elimination, but not through microsomal enzymes. Our results indicate that the combination of linezolid with rifampicin reduces linezolid blood concentrations via metabolic enzymes.


Zdroje

1. Hamel JC, Stapert D, Moerman JK, Ford CW. Linezolid, critical characteristics. Infection. 2000;28(1):60–4. Epub 2001/02/07. 10744479.

2. Fung HB, Kirschenbaum HL, Ojofeitimi BO. Linezolid: an oxazolidinone antimicrobial agent. Clinical therapeutics. 2001;23(3):356–91. Epub 2001/04/25. 11318073.

3. Perlroth J, Kuo M, Tan J, Bayer AS, Miller LG. Adjunctive use of rifampin for the treatment of Staphylococcus aureus infections: a systematic review of the literature. Archives of internal medicine. 2008;168(8):805–19. Epub 2008/04/30. doi: 10.1001/archinte.168.8.805 18443255.

4. Forrest GN, Tamura K. Rifampin combination therapy for nonmycobacterial infections. Clinical microbiology reviews. 2010;23(1):14–34. Epub 2010/01/13. doi: 10.1128/CMR.00034-09 20065324; PubMed Central PMCID: PMC2806656.

5. Sanders WE Jr. Rifampin. Annals of internal medicine. 1976;85(1):82–6. Epub 1976/07/01. doi: 10.7326/0003-4819-85-1-82 937928.

6. Vergidis P, Rouse MS, Euba G, Karau MJ, Schmidt SM, Mandrekar JN, et al. Treatment with linezolid or vancomycin in combination with rifampin is effective in an animal model of methicillin-resistant Staphylococcus aureus foreign body osteomyelitis. Antimicrobial agents and chemotherapy. 2011;55(3):1182–6. Epub 2010/12/30. doi: 10.1128/AAC.00740-10 21189340; PubMed Central PMCID: PMC3067063.

7. Cabellos C, Garrigos C, Taberner F, Force E, Pachon-Ibanez ME. Experimental study of the efficacy of linezolid alone and in combinations against experimental meningitis due to Staphylococcus aureus strains with decreased susceptibility to beta-lactams and glycopeptides. Journal of infection and chemotherapy: official journal of the Japan Society of Chemotherapy. 2014;20(9):563–8. Epub 2014/06/30. doi: 10.1016/j.jiac.2014.05.008 24973908.

8. Drusano GL, Neely M, Van Guilder M, Schumitzky A, Brown D, Fikes S, et al. Analysis of combination drug therapy to develop regimens with shortened duration of treatment for tuberculosis. PloS one. 2014;9(7):e101311. Epub 2014/07/09. doi: 10.1371/journal.pone.0101311 25003557; PubMed Central PMCID: PMC4086932.

9. Gandelman K, Zhu T, Fahmi OA, Glue P, Lian K, Obach RS, et al. Unexpected effect of rifampin on the pharmacokinetics of linezolid: in silico and in vitro approaches to explain its mechanism. Journal of clinical pharmacology. 2011;51(2):229–36. Epub 2010/04/08. doi: 10.1177/0091270010366445 20371736.

10. Ashizawa N, Tsuji Y, Kawago K, Higashi Y, Tashiro M, Nogami M, et al. Successful treatment of methicillin-resistant Staphylococcus aureus osteomyelitis with combination therapy using linezolid and rifampicin under therapeutic drug monitoring. Journal of infection and chemotherapy: official journal of the Japan Society of Chemotherapy. 2016;22(5):331–4. Epub 2016/01/07. doi: 10.1016/j.jiac.2015.11.012 26732509.

11. Tsuji Y, Holford NHG, Kasai H, Ogami C, Heo YA, Higashi Y, et al. Population pharmacokinetics and pharmacodynamics of linezolid-induced thrombocytopenia in hospitalized patients. British journal of clinical pharmacology. 2017;83(8):1758–72. Epub 2017/02/12. doi: 10.1111/bcp.13262 28186644; PubMed Central PMCID: PMC5510085.

12. Staudinger JL, Goodwin B, Jones SA, Hawkins-Brown D, MacKenzie KI, LaTour A, et al. The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(6):3369–74. Epub 2001/03/15. doi: 10.1073/pnas.051551698 11248085; PubMed Central PMCID: PMC30660.

13. Bodin K, Lindbom U, Diczfalusy U. Novel pathways of bile acid metabolism involving CYP3A4. Biochimica et biophysica acta. 2005;1687(1–3):84–93. Epub 2005/02/15. doi: 10.1016/j.bbalip.2004.11.003 15708356.

14. Holmstock N, Gonzalez FJ, Baes M, Annaert P, Augustijns P. PXR/CYP3A4-humanized mice for studying drug-drug interactions involving intestinal P-glycoprotein. Molecular pharmaceutics. 2013;10(3):1056–62. Epub 2013/01/31. doi: 10.1021/mp300512r 23360470; PubMed Central PMCID: PMC3594649.

15. Wynalda MA, Hauer MJ, Wienkers LC. Oxidation of the novel oxazolidinone antibiotic linezolid in human liver microsomes. Drug metabolism and disposition: the biological fate of chemicals. 2000;28(9):1014–7. Epub 2000/08/19. 10950842.

16. Egle H, Trittler R, Kummerer K, Lemmen SW. Linezolid and rifampin: Drug interaction contrary to expectations? Clinical pharmacology and therapeutics. 2005;77(5):451–3. Epub 2005/05/19. doi: 10.1016/j.clpt.2005.01.020 15900290.

17. Mealey KL. Therapeutic implications of the MDR-1 gene. Journal of veterinary pharmacology and therapeutics. 2004;27(5):257–64. Epub 2004/10/27. doi: 10.1111/j.1365-2885.2004.00607.x 15500562.

18. Tian R, Koyabu N, Morimoto S, Shoyama Y, Ohtani H, Sawada Y. Functional induction and de-induction of P-glycoprotein by St. John's wort and its ingredients in a human colon adenocarcinoma cell line. Drug metabolism and disposition: the biological fate of chemicals. 2005;33(4):547–54. Epub 2005/01/11. doi: 10.1124/dmd.104.002485 15640377.

19. Chan GN, Patel R, Cummins CL, Bendayan R. Induction of P-glycoprotein by antiretroviral drugs in human brain microvessel endothelial cells. Antimicrobial agents and chemotherapy. 2013;57(9):4481–8. Epub 2013/07/10. doi: 10.1128/AAC.00486-13 23836171; PubMed Central PMCID: PMC3754350.

20. Ouwerkerk-Mahadevan S, Snoeys J, Peeters M, Beumont-Mauviel M, Simion A. Drug-Drug Interactions with the NS3/4A Protease Inhibitor Simeprevir. Clinical pharmacokinetics. 2016;55(2):197–208. Epub 2015/09/12. doi: 10.1007/s40262-015-0314-y 26353895; PubMed Central PMCID: PMC4756048.

21. MacLeod AK, McLaughlin LA, Henderson CJ, Wolf CR. Activation status of the pregnane X receptor influences vemurafenib availability in humanized mouse models. Cancer research. 2015;75(21):4573–81. Epub 2015/09/13. doi: 10.1158/0008-5472.CAN-15-1454 26363009; PubMed Central PMCID: PMC4634205.

22. MacGowan AP. Pharmacokinetic and pharmacodynamic profile of linezolid in healthy volunteers and patients with Gram-positive infections. The Journal of antimicrobial chemotherapy. 2003;51 Suppl 2:ii17–25. Epub 2003/05/06. doi: 10.1093/jac/dkg248 12730139.

23. Slatter JG, Stalker DJ, Feenstra KL, Welshman IR, Bruss JB, Sams JP, et al. Pharmacokinetics, metabolism, and excretion of linezolid following an oral dose of [(14)C]linezolid to healthy human subjects. Drug metabolism and disposition: the biological fate of chemicals. 2001;29(8):1136–45. Epub 2001/07/17. 11454733.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden