Understanding the effect of producers’ attitudes, perceived norms, and perceived behavioral control on intentions to use antimicrobials prudently on New York dairy farms


Autoři: Amy K. Vasquez aff001;  Carla Foditsch aff001;  Stéphie-Anne C. Dulièpre aff001;  Julie D. Siler aff001;  David R. Just aff002;  Lorin D. Warnick aff001;  Daryl V. Nydam aff001;  Jaap Sok aff003
Působiště autorů: Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America aff001;  Dyson School of Applied Economics and Management, Cornell University, Ithaca, New York, United States of America aff002;  Department of Social Sciences, Business Economics, Wageningen University, Wageningen, The Netherlands aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222442

Souhrn

Understanding farmers’ behavior, motivations, and perceptions toward antimicrobial use can influence how veterinarians translate research into practice and guide effective ways of implementing protocols. A multidisciplinary team investigated behavioral tendencies of New York dairy farmers toward antimicrobial use by administering a survey modeled with the reasoned action approach. This approach is a framework from social psychology containing the constructs attitude, perceived norms, and perceived behavioral control, and is used in combination with structural equation modeling to determine what drives intentions. Multiple indicators and multiple causes (MIMIC) models were then used to determine the effects of beliefs on their underlying constructs. The objective of the study was to provide direct and indirect measures of the constructs using survey data to determine importance of and associations with intention to use antimicrobials prudently. The structural equation model indicated that perceived behavioral control explained intention. Thus, farmers who feel capable of prudent use expressed positive intentions. Attitude and perception of others also had influence to a lesser extent. MIMIC models showed that the most important attributes of instrumental attitude were increasing profitability, decreasing risk of residues, and increasing herd health. Contributing attributes of affective attitude were job satisfaction, decreasing resistance, and increasing milk production. For perceived norms, the attributes were opinions/approval of family and peers, veterinarians, and milk processors. Finally, for perceived behavioral control, attributes focused on saving money on labor and treatment, ability to fit into the daily routine, and effectiveness with veterinary guidance. In conclusion, the best approach for adoption of practices might be presentation of examples of successful strategies by other producers, particularly in peer groups. In addition, veterinarians should provide the tools and guidance needed to produce economic gain, reduction of risks associated with residues and resistance, and positive experiences when using the tactics.

Klíčová slova:

Medicine and health sciences – Pharmacology – Drugs – Antimicrobial resistance – Antibiotic resistance – Biology and life sciences – Microbiology – Microbial control – Antimicrobials – Antibiotics – Nutrition – Diet – Beverages – Milk – Anatomy – Body fluids – Physiology – Psychology – Behavior – Imitation – Research and analysis methods – Research design – Survey research – Surveys – People and places – Population groupings – Professions – Veterinarians – Social sciences


Zdroje

1. Freimuth V, Linnan HW, Potter P. Communicating the threat of emerging infections to the public. Emerg Infect Dis. 2000;6(4):337–47. doi: 10.3201/eid0604.000403 10905966

2. Aarestrup FM. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin Pharmacol Toxicol. 2005;96(4):271–81. doi: 10.1111/j.1742-7843.2005.pto960401.x 15755309

3. Threlfall EJ, Ward LR, Frost JA, Willshaw GA. The emergence and spread of antibiotic resistance in food-borne bacteria. Int J Food Microbiol. 2000;62(1–2):1–5. 11139009

4. Barbosa TM, Levy SB. The impact of antibiotic use on resistance development and persistence. Drug Resist Updat. 2000;3(5):303–11. doi: 10.1054/drup.2000.0167 11498398

5. Meyer E, Gastmeier P, Deja M, Schwab F. Antibiotic consumption and resistance: data from Europe and Germany. Int J Med Microbiol. 2013;303(6–7):388–95. doi: 10.1016/j.ijmm.2013.04.004 23727396

6. Buller H, Hinchliffe S, Hockenhull J, Barrett D, Reyher K, Butterworth A, et al. Systematic review and social research to further understanding of current practice in the context of using antimicrobials in livestock farming and to inform appropriate interventions to reduce antimicrobial resistance within the livestock sector. United Kingdom: Department for Environment Food & Rural Affairs, 2015. http://sciencesearch.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=19623

7. Pol M, Ruegg PL. Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms in Wisconsin. J Dairy Sci. 2007;90(1):249–61. 17183093

8. Scherpenzeel CGM, Tijs SHW, den Uijl IEM, Santman-Berends IMGA, Velthuis AGJ, Lam TJGM. Farmers’ attitude toward the introduction of selective dry cow therapy. J Dairy Sci. 2016;99(10):8259–66. doi: 10.3168/jds.2016-11349 27448856

9. World Health Organization. Fact Sheet: Antimicrobial Resistance. 2017. https://www.who.int/news-room/fact-sheets/detail/antibiotic-resistance.

10. Vasquez AK, Nydam DV, Capel MB, Eicker S, Virkler PD. Clinical outcome comparison of immediate blanket treatment versus a delayed pathogen-based treatment protocol for clinical mastitis in a New York dairy herd. J Dairy Sci. 2017;100(4):2992–3003. doi: 10.3168/jds.2016-11614 28161180

11. Lago A, Godden SM, Bey R, Ruegg PL, Leslie K. The selective treatment of clinical mastitis based on on-farm culture results: I. Effects on antibiotic use, milk withholding time, and short-term clinical and bacteriological outcomes. J Dairy Sci. 2011;94(9):4441–56. doi: 10.3168/jds.2010-4046 21854917

12. Lago A, Godden SM, Bey R, Ruegg PL, Leslie K. The selective treatment of clinical mastitis based on on-farm culture results: II. Effects on lactation performance, including clinical mastitis recurrence, somatic cell count, milk production, and cow survival. J Dairy Sci. 2011;94(9):4457–67. doi: 10.3168/jds.2010-4047 21854918

13. McDougall S, Niethammer J, Graham EM. Antimicrobial usage and risk of retreatment for mild to moderate clinical mastitis cases on dairy farms following on-farm bacterial culture and selective therapy. N Z Vet J. 2018;66(2):98–107. doi: 10.1080/00480169.2017.1416692 29241025

14. Green M, Huxley J, Bradley A. A rational approach to dry cow therapy. In Practice. 2002;24(10):582–587. doi: 10.1136/inpract.24.10.582

15. Patel K, Godden SM, Royster EE, Timmerman JA, Crooker BA, McDonald N. Pilot study: Impact of using a culture-guided selective dry cow therapy program targeting quarter-level treatment on udder health and antibiotic use. The Bovine Practitioner. 2017;51(1):48–57.

16. Vasquez AK, Nydam DV, Foditsch C, Wieland M, Lynch R, Eicker S, et al. Use of a culture-independent on-farm algorithm to guide the use of selective dry-cow antibiotic therapy. J Dairy Sci. 2018;101(6):5345–61. doi: 10.3168/jds.2017-13807 29605332

17. Cameron M, Keefe GP, Roy JP, Stryhn H, Dohoo IR, McKenna SL. Evaluation of selective dry cow treatment following on-farm culture: Milk yield and somatic cell count in the subsequent lactation. J Dairy Sci. 2015;98(4):2427–36. doi: 10.3168/jds.2014-8876 25648799

18. Cameron M, McKenna SL, MacDonald KA, Dohoo IR, Roy JP, Keefe GP. Evaluation of selective dry cow treatment following on-farm culture: risk of postcalving intramammary infection and clinical mastitis in the subsequent lactation. J Dairy Sci. 2014;97(1):270–84. doi: 10.3168/jds.2013-7060 24183691

19. United States Department of Agriculture, Animal and Plant Health Inspection Service. Dairy 2014: Milk quality, milking procedures, and mastitis in the United States. 2016. https://www.aphis.usda.gov/animal_health/nahms/dairy/downloads/dairy14/Dairy14_dr_Mastitis.pdf

20. Raymond MJ, Wohrle RD, Call DR. Assessment and promotion of judicious antibiotic use on dairy farms in Washington State. J Dairy Sci. 2006;89(8):3228–40. doi: 10.3168/jds.S0022-0302(06)72598-X 16840641

21. Senger I, Borges JAR, Machado JAD. Using the theory of planned behavior to understand the intention of small farmers in diversifying their agricultural production. Journal of Rural Studies. 2017;49:32–40.

22. Sok J, Hogeveen H, Elbers AR, Oude Lansink AG. Using farmers’ attitude and social pressures to design voluntary Bluetongue vaccination strategies. Prev Vet Med. 2016;133:114–9. doi: 10.1016/j.prevetmed.2016.09.016 27665231

23. Fielding KS, Terry DJ, Masser BM, Hogg MA. Integrating social identity theory and the theory of planned behaviour to explain decisions to engage in sustainable agricultural practices. Br J Soc Psychol. 2008;47(Pt 1):23–48. doi: 10.1348/014466607X206792 17535461

24. Jones PJ, Marier EA, Tranter RB, Wu G, Watson E, Teale CJ. Factors affecting dairy farmers’ attitudes towards antimicrobial medicine usage in cattle in England and Wales. Prev Vet Med. 2015;121(1–2):30–40. doi: 10.1016/j.prevetmed.2015.05.010 26123631

25. Fishbein M, Ajzen I, Albarracin D, Hornik RC. Prediction and change of health behavior: applying the reasoned action approach. 1st ed. Mahwah: L. Erlbaum Associates; 2007.

26. McEachan R, Taylor N, Harrison R, Lawton R, Gardner P, Conner M. Meta-Analysis of the Reasoned Action Approach (RAA) to Understanding Health Behaviors. Ann Behav Med. 2016;50(4):592–612. doi: 10.1007/s12160-016-9798-4 27169555

27. Lam TJGM, Jansen J, Wessels RJ. The RESET Mindset Model applied on decreasing antibiotic usage in dairy cattle in the Netherlands. Ir Vet J. 2017;70:5. doi: 10.1186/s13620-017-0085-x 28250915

28. Montano DE, Kasprzyk D. Theory of reasoned action, theory of planned behavior, and the integrated behavioral model. In: Glanz K, Rimer K, Viswanath K, editors. Health behavior and health education: theory, research, and practice. 5th ed. San Francisco: John Wiley & Sons; 2008. pp. 3–21.

29. Fishbein M, Ajzen I. Predicting and changing behavior: the reasoned action approach. 1st ed. New York: Psychology Press; 2010.

30. Bollen K, Lennox R. Conventional wisdom on measurement: A structural equation perspective. Psychological Bulletin. 1991;110:305–314.

31. Blalock HM. Causal inferences in nonexperimental research. Chapel Hill: The University of North Carolina Press; 1964.

32. Fornell C, Larcker DF. Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research. 1981;18(1):39–50. doi: 10.1177/002224378101800104

33. Bagozzi RP, Yi Y. Specification, evaluation, and interpretation of structural equation models. Journal of the Academy of Marketing Science. 2012;40:8–34.

34. Hu L-t Bentler PM. Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods. 1998;3(4):424–53. doi: 10.1037/1082-989X.3.4.424

35. Hu L-t, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal. 1999;6:1–55.

36. Hair JF. Multivariate data analysis. 7th ed. Upper Saddle River: Prentice Hall; 2010.

37. Kayitsinga J, Schewe RL, Contreras GA, Erskine RJ. Antimicrobial treatment of clinical mastitis in the eastern United States: The influence of dairy farmers’ mastitis management and treatment behavior and attitudes. J Dairy Sci. 2017;100(2):1388–407. doi: 10.3168/jds.2016-11708 27939551

38. Feather NT. Subjective probability and decision under uncertainty. Psychol Rev. 1959;66(3):150–64. doi: 10.1037/h0045692 13658302

39. Fishbein M. An investigation of the relationships between beliefs about an object and the attitude toward that object. Human Relations. 1963;16(3):233–9. doi: 10.1177/001872676301600302

40. Higham LE, Deakin A, Tivey E, Porteus V, Ridgway S, Rayner AC. A survey of dairy cow farmers in the United Kingdom: knowledge, attitudes and practices surrounding antimicrobial use and resistance. Vet Rec. 2018;183(24):746. doi: 10.1136/vr.104986 30413678

41. Diamantopoulos A, Winklhofer HM. Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research. 2001;38(2):269–77. doi: 10.1509/jmkr.38.2.269.18845

42. Sok J, Hogeveen H, Elbers ARW, Oude Lansink AGJM. Farmers’ beliefs and voluntary vaccination schemes: Bluetongue in Dutch dairy cattle. Food Policy. 2015;57:40–9. doi: 10.1016/j.foodpol.2015.09.006

43. Kock N, Lynn GS. Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations. Journal of the Association for Information Systems. 2012;13(7): 546–580.

44. Kline RB. Principles and practice of structural equation modeling. 3rd ed. New York: The Guilford Press; 2011.

45. Kenny DA, Kaniskan B, McCoach DB. The performance of RMSEA in models with small degrees of freedom. Sociological Methods & Research. 2014:1–22. doi: 10.1177/0049124114543236

46. United States Department of Health and Human Services PHS, Food and Drug Administration. Grade "A" Pasteurized Milk Ordinance, 2017. https://www.fda.gov/media/114169/download.

47. Swinkels JM, Hilkens A, Zoche-Golob V, Krömker V, Buddiger M, Jansen J, et al. Social influences on the duration of antibiotic treatment of clinical mastitis in dairy cows. J Dairy Sci. 2015;98(4):2369–80. doi: 10.3168/jds.2014-8488 25682148

48. Friedman DB, Kanwat CP, Headrick ML, Patterson NJ, Neely JC, Smith LU. Importance of prudent antibiotic use on dairy farms in South Carolina: a pilot project on farmers’ knowledge, attitudes and practices. Zoonoses Public Health. 2007;54(9–10):366–75. doi: 10.1111/j.1863-2378.2007.01077.x 18035975

49. Griva K, Myers LB, Newman S. Illness perceptions and self efficacy beliefs in adolescents and young adults with insulin dependent diabetes mellitus. Psychology & Health. 2000;15(6):733–50. doi: 10.1080/08870440008405578

50. Zelber-Sagi S, Bord S, Dror-Lavi G, Smith ML, Towne SD Jr., Buch A, et al. Role of illness perception and self-efficacy in lifestyle modification among non-alcoholic fatty liver disease patients. World J Gastroenterol. 2017;23(10):1881–90. doi: 10.3748/wjg.v23.i10.1881 28348495

51. Holloway A, Watson HE. Role of self-efficacy and behaviour change. Int J Nurs Pract. 2002;8(2):106–15. 11993577

52. United States Department of Agriculture. Census of Agriculture, 2017. https://www.nass.usda.gov/Publications/AgCensus/2017/index.php#full_report.

53. Shortall O, Sutherland L-A, Ruston A, Kaler J. True cowmen and commercial farmers: exploring vets’ and dairy farmers’ contrasting views of ‘good farming’ in relation to biosecurity. Sociologia Ruralis. 2018;58(3):583–603. doi: 10.1111/soru.12205

54. World Health Organization. Global framework for development & stewardship to combat antimicrobial resistance: Draft roadmap. 2017. https://www.who.int/antimicrobial-resistance/global-action-plan/UpdatedRoadmap-Global-Framework-for-Development-Stewardship-to-combatAMR_2017_11_03.pdf

55. Schober MF, Conrad FG, Fricker SS. Misunderstanding standardized language. Applied Cognitive Psychology. 2004;18:169–188.

56. Ajzen I, Fishbein M. Questions raised by a reasoned action approach: comment on Ogden (2003). Health Psychol. 2004;23(4):431–4.

57. Ogden J. Some problems with social cognition models: A pragmatic and conceptual analysis. Health Psychology. 2003: 22(4): 424–428. doi: 10.1037/0278-6133.22.4.424 12940399

58. Ouweneel E, Schaufeli WB, Le Blanc PM. Believe, and you will achieve: changes over time in self-efficacy, engagement, and performance. Appl Psychol Health Well Being. 2013;5(2):225–47. doi: 10.1111/aphw.12008 23616308


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden