Skin-associated lactic acid bacteria from North American bullfrogs as potential control agents of Batrachochytrium dendrobatidis
Autoři:
M. V. Niederle aff001; J. Bosch aff002; C. E. Ale aff001; M. E. Nader-Macías aff004; C. Aristimuño Ficoseco aff004; L. F. Toledo aff005; A. Valenzuela-Sánchez aff006; C. Soto-Azat aff006; S. E. Pasteris aff001
Působiště autorů:
Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tuc
aff001; Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Instituto de Biología “Dr. Francisco D. Barbieri”, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tuc
aff001; Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
aff002; Research Unit of Biodiversity (CSIC, UO, PA), Oviedo University—Campus Mieres, Spain
aff003; Centro de Referencia para Lactobacilos (CERELA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Miguel de Tucumán, Argentina
aff004; Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
aff005; Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
aff006; Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
aff007; Organización No Gubernamental (ONG) Ranita de Darwin, Santiago, Chile
aff008; Organización No Gubernamental (ONG) Ranita de Darwin, Valdivia, Chile
aff009
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0223020
Souhrn
The fungal pathogen Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis and has been a key driver in the catastrophic decline of amphibians globally. While many strategies have been proposed to mitigate Bd outbreaks, few have been successful. In recent years, the use of probiotic formulations that protect an amphibian host by killing or inhibiting Bd have shown promise as an effective chytridiomycosis control strategy. The North American bullfrog (Lithobates catesbeianus) is a common carrier of Bd and harbours a diverse skin microbiota that includes lactic acid bacteria (LAB), a microbial group containing species classified as safe and conferring host benefits. We investigated beneficial/probiotic properties: anti-Bd activity, and adhesion and colonisation characteristics (hydrophobicity, biofilm formation and exopolysaccharide-EPS production) in two confirmed LAB (cLAB-Enterococcus gallinarum CRL 1826, Lactococcus garvieae CRL 1828) and 60 presumptive LAB (pLAB) [together named as LABs] isolated from bullfrog skin.We challenged LABs against eight genetically diverse Bd isolates and found that 32% of the LABs inhibited at least one Bd isolate with varying rates of inhibition. Thus, we established a score of sensitivity from highest (BdGPL AVS7) to lowest (BdGPL C2A) for the studied Bd isolates. We further reveal key factors underlying host adhesion and colonisation of LABs. Specifically, 90.3% of LABs exhibited hydrophilic properties that may promote adhesion to the cutaneous mucus, with the remaining isolates (9.7%) being hydrophobic in nature with a surface polarity compatible with colonisation of acidic, basic or both substrate types. We also found that 59.7% of LABs showed EPS synthesis and 66.1% produced biofilm at different levels: 21% weak, 29% moderate, and 16.1% strong. Together all these properties enhance colonisation of the host surface (mucus or epithelial cells) and may confer protective benefits against Bd through competitive exclusion. Correspondence analysis indicated that biofilm synthesis was LABs specific with high aggregating bacteria correlating with strong biofilm producers, and EPS producers being correlated to negative biofilm producing LABs. We performed Random Amplified Polymorphic DNA (RAPD)-PCR analysis and demonstrated a higher degree of genetic diversity among rod-shaped pLAB than cocci. Based on the LAB genetic analysis and specific probiotic selection criteria that involve beneficial properties, we sequenced 16 pLAB which were identified as Pediococcus pentosaceus, Enterococcus thailandicus, Lactobacillus pentosus/L. plantarum, L. brevis, and L. curvatus. Compatibility assays performed with cLAB and the 16 species described above indicate that all tested LAB can be included in a mixed probiotic formula. Based on our analyses, we suggest that E. gallinarum CRL 1826, L. garvieae CRL 1828, and P. pentosaceus 15 and 18B represent optimal probiotic candidates for Bd control and mitigation.
Klíčová slova:
Amphibians – Bacterial biofilms – Enterococcus – Exopolysaccharides – Fungal pathogens – Lactobacillus – Probiotics – Lactic acid bacteria
Zdroje
1. Catenazzi A. State of the world's amphibians. Annu Rev Environ Resour.2015; 40:91–119.
2. Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science.2019; 363(6434):1459–1463. doi: 10.1126/science.aav0379 30923224
3. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL. The status of the world's land and marine mammals: diversity, threat, and knowledge. Science.2008; 322(5899):225–230. doi: 10.1126/science.1165115 18845749
4. Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci.2013; 110(38):15325–15329. doi: 10.1073/pnas.1307356110 24003137
5. Longcore JE, Pessier AP, Nichols DK. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia.1999; 91:219–227.
6. Gower DJ, Doherty-Bone T, Loader SP, Wilkinson M, Kouete MT, Tapley B et al. Batrachochytrium dendrobatidis infection and lethal chytridiomycosis in caecilian amphibians (Gymnophiona). Ecohealth.2013; 10(2):173–183. doi: 10.1007/s10393-013-0831-9 23677560
7. Rendle M, Tapley B, Perkins M, Bittencourt-Silva G, Gower DJ, Wilkinson M. Itraconazole treatment of Batrachochytrium dendrobatidis (Bd) infection in captive caecilians (Amphibia: Gymnophiona) and the first case of Bd infection in a wild neotropical caecilian. J Zoo Aquar Res.2015; 3(4):137–140.
8. Lambertini C, Becker CG, Bardier C, da Silva Leite D, Toledo LF. Spatial distribution of Batrachochytrium dendrobatidis in South American caecilians. Dis Aquat Organ.2017; 124(2):109–116. doi: 10.3354/dao03114 28425424
9. Berger L, Hyatt AD, Speare R, Longcore JE. Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Organ.2005; 68:51–63. doi: 10.3354/dao068051 16465834
10. Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A et al. Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science.2009; 326(5952):582–585. doi: 10.1126/science.1176765 19900897
11. Fites JS, Reinert LK, Chappell TM, Rollins-Smith LA. Inhibition of local immune responses by the frog-killing fungus Batrachochytrium dendrobatidis. Infection and Immunity.2014; 82(11): 4698–4706. doi: 10.1128/IAI.02231-14 25156734
12. Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC, Castley JG et al. Review of the amphibian immune response to chytridiomycosis, and future directions. Front Immunol.2018; 9:2536. doi: 10.3389/fimmu.2018.02536 30473694
13. Garner TW, Schmidt BR, Martel A, Pasmans F, Muths E, Cunningham AAet al. Mitigating amphibian chytridiomycoses in nature. Philos Trans R Soc Lond B Biol Sci.2016; 371:1709.
14. Antwis RE, Weldon C. Amphibian skin defences show variation in ability to inhibit growth of Batrachochytrium dendrobatidis isolates from the Global Panzootic Lineage. Microbiology. 2017; 63:1835–1838.
15. Greenspan SE, Lambertini C, Carvalho T, James TY, Toledo LF, Haddad CFB et al. Hybrids of amphibian chytrid show high virulence in native hosts. Sci Rep.2018; 8:9600. doi: 10.1038/s41598-018-27828-w 29941894
16. Bosch J, Sanchez-Tomé E, Fernández-Loras A, Oliver JA, Fisher MC, Garner TW. Successful elimination of a lethal wildlife infectious disease in nature. Biol Lett.2015; 11(11):e20150874.
17. Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KP et al. Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett.2013; 16(6):807–820. doi: 10.1111/ele.12099 23452227
18. Küng D, Bigler L, Davis LR, Gratwicke B, Griffith E, Woodhams DC. Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease. PLoS One.2014; 9(1):e87101. doi: 10.1371/journal.pone.0087101 24489847
19. Rebollar EA, Simonetti SJ, Shoemaker WR, Harris RN. Direct and indirect horizontal transmission of the antifungal probiotic bacterium Janthinobacterium lividum on green frog (Lithobates clamitans) tadpoles. Appl Environ Microbiol.2016; 82:2457–2466. doi: 10.1128/AEM.04147-15 26873311
20. Antwis RE, Preziosi RF, Harrison XA, Garner TW. Amphibian symbiotic bacteria do not show a universal ability to inhibit growth of the global panzootic lineage of Batrachochytrium dendrobatidis.2015; 81(11):3706–3711.
21. Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA et al. Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microb Ecol.2018; 75(4):1049–1062. doi: 10.1007/s00248-017-1095-7 29119317
22. Brucker RM, Reid N, Harris CR, Gallaher TN, Flaherty DC, Lam BA et al. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J Chem Ecol.2008; 34:1422–1429. doi: 10.1007/s10886-008-9555-7 18949519
23. Harris RN, Brucker RM, Walke JB, Becker MH, Schwantes CR, Flaherty DC et al. Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J.2009; 3(7):818–824. doi: 10.1038/ismej.2009.27 19322245
24. Harris RN, Lauer A, Simon MA, Banning JL, Alford RA. Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis Aquat Organ.2009; 83(1):11–16. doi: 10.3354/dao02004 19301631
25. Becker MH, Harris RN. Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS One.2010; 5(6):e10957. doi: 10.1371/journal.pone.0010957 20532032
26. Park ST, Collingwood AM, St-Hilaire S, Sheridan PP. Inhibition of Batrachochytrium dendrobatidis caused by bacteria isolated from the skin of boreal toads, Anaxyrus (Bufo) boreas boreas, from Grand Teton National Park, Wyoming, USA. Microbiol Insights.2014; 7:1–8. doi: 10.4137/MBI.S13639 24826077
27. Muletz-Wolz CR, DiRenzo GV, Yarwood SA, Campbell Grant EH, Fleischer RC, Lips KR. Antifungal bacteria on woodland salamander skin exhibit high taxonomic diversity and geographic variability. Appl Environ Microbiol.2017; 83(9):e00186–17. doi: 10.1128/AEM.00186-17 28213545
28. Piovia-Scott J, Rejmanek D, Woodhams DC, Worth SJ, Kenny H, McKenzie V et al. Greater species richness of bacterial skin symbionts better suppresses the amphibian fungal pathogen Batrachochytrium dendrobatidis. Microb Ecol.2017; 74(1):217–226. doi: 10.1007/s00248-016-0916-4 28064360
29. Kueneman JG, Woodhams DC, Harris R, Archer HM, Knight R, McKenzie VJ. Probiotic treatment restores protection against lethal fungal infection lost during amphibian captivity. Proc Biol Sci.2016; 283:1839.
30. Lazado CC, Caipang CM. Mucosal immunity and probiotics in fish. Fish Shellfish Immun.2014; 39(1):78–89.
31. Fdhila K, Haddaji N, Chakroun I, Dhiaf A, Macherki MEE, Khouildi B et al. Culture conditions improvement of Crassostrea gigas using a potential probiotic Bacillus sp strain. Microb Pathog.2017; 110:654–658. doi: 10.1016/j.micpath.2017.07.017 28710014
32. Batista S, Medina A, Pires MA, Moriñigo MA, Sansuwan K, Fernandes KJM et al. Innate immune response, intestinal morphology and microbiota changes in Senegalese sole fed plant protein diets with probiotics or autolysed yeast. Appl Microbiol Biotechnol.2016; 100(16):7223–7238. doi: 10.1007/s00253-016-7592-7 27183997
33. Hai NV. The use of probiotics in aquaculture. J Appl Microbiol.2015; 119(4):917–935. doi: 10.1111/jam.12886 26119489
34. Belden LK, Harris RN. Infectious diseases in wildlife: the community ecology context. Front Ecol Environ.2007; 10(5):533–539.
35. Rollins-Smith L, Conlon JM. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev Comp Immunol.2005; 29(7):589–598. doi: 10.1016/j.dci.2004.11.004 15784290
36. Toledo RC, Jared C. Cutaneous granular glands and amphibian venoms. Camp Biochem Physiol.1995; 1(1):1–29.
37. Moss AS, Reddy NS, Dortaj IM, San Francisco MJ. Chemotaxis of the amphibian pathogen Batrachochytrium dendrobatidis and its response to a variety of attractants. Mycologia.2008; 100(1):1–5. 18488347
38. Loudon AH, Holland JA, Umile TP, Burzynski EA, Minbiole KP, Harris RN. Interactions between amphibians' symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front Microbiol.2014; 5:441. doi: 10.3389/fmicb.2014.00441 25191317
39. Pasteris SE, Bühler MI, Nader-Macías ME. Microbiological and histological studies in farmed-bullfrog (Rana catesbeiana) displaying red-leg syndrome. Aquaculture.2006; 251:11–18.
40. Pasteris SE, Roig Babot G, Otero MC, Bühler MI, Nader MEF. Beneficial properties of lactic acid bacteria isolated from a Rana castesbeiana hatchery. Aquac Res.2009; 40:1605–1615.
41. Pasteris SE, Vera Pingitore E, Roig Babot G, Otero MC, Bühler MI, Nader-Macías ME. Characterization of the beneficial properties of lactobacilli isolated from bullfrog (Rana catesbeiana) hatchery. Antonie van Leeuwenhoek. 2009; 95:375–385.
42. Pasteris SE, Montel Mendoza G, Llanos RJ, Pucci Alcaide FJ, Nader‐Macías MEF. Preliminary assessment of in vivo safety of potentially probiotic lactic acid bacteria for American bullfrog culture. Aquac Res.2017; 48(5):2157–2172.
43. Montel Mendoza GM, Pasteris SE, Ale CE, Otero MC, Bühler MI, Nader-Macías ME. Cultivable microbiota of Lithobates catesbeianus and advances in the selection of lactic acid bacteria as biological control agents in raniculture. Res Vet Sci.2012; 93:1160–1167. doi: 10.1016/j.rvsc.2012.05.007 22695175
44. Ahmed FE. Genetically modified probiotics in foods. Trends Biotechnol.2003; 21(11):491–497. doi: 10.1016/j.tibtech.2003.09.006 14573362
45. Walter J, Schwab C, Loach DM, Gänzle MG, Tannock GW. Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology.2008; 154: 72–80. doi: 10.1099/mic.0.2007/010637-0 18174127
46. Ventura M, O'Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR, van Sinderen Det al. Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol.2009; 7(1):61–71. doi: 10.1038/nrmicro2047 19029955
47. Fusco V, Quero GM, Cho GS, Kabisch J, Meske D, Neve H et al. The genus Weissella: taxonomy, ecology and biotechnological potential. Front Microbiol.2015; 6:155. doi: 10.3389/fmicb.2015.00155 25852652
48. Reid G, Sanders ME, Gaskins HR, Gibson GR, Mercenier A, Rastall R et al. New scientific paradigms for probiotics and prebiotics. J Clin Gastroenterol.2003; 37(2):105–118. doi: 10.1097/00004836-200308000-00004 12869879
49. European Food Safety Authority. EFSA Journal 2008; 732:1–15.
50. Zorriehzahra MJ, Delshad ST, Adel M, Tiwari R, Karthik K, Dhama K et al. Probiotics as beneficial microbes in aquaculture: an update on their multiple modes of action: a review. Vet Q.2016; 36(4):228–241. doi: 10.1080/01652176.2016.1172132 27075688
51. Gao X, Zhang M, Li X, Han Y, Wu F, Liu Y. The effects of feeding Lactobacillus pentosus on growth, immunity, and disease resistance in Haliotis discus hannai Ino. Fish Shellfish Immun.2018; 78:42–51.
52. Ringø E, Hoseinifar SH, Ghosh K, Doan HV, Beck BR, Song SK. Lactic acid bacteria in finfish-an update. Front Microbiol.2018; 9:1818. doi: 10.3389/fmicb.2018.01818 30147679
53. Quintana G, Niederle MV, Minahk CJ, Picariello G, Nader-Macías MEF, Pasteris SE. Nisin Z produced by Lactococcus lactis from bullfrog hatchery is active against Citrobacter freundii, a red-leg syndrome related pathogen. World J Microbiol Biotechnol.2017; 33:186. doi: 10.1007/s11274-017-2353-z 28956240
54. Sarika AR, Lipton AP, Aishwarya MS, Rachana Mol RS. Lactic acid bacteria from marine fish: antimicrobial resistance and production of bacteriocin effective against L. monocytogenes in situ. J Food Microbiol Saf Hyg.2017; 2:4.
55. Digaitiene A, Hansen ÅS, Juodeikiene G, Eidukonyte D, Josephsen J. Lactic acid bacteria isolated from rye sourdoughs produce bacteriocin-like inhibitory substances active against Bacillus subtilis and fungi. J App Microbiol.2012; 112(4):732–742.
56. Graham CE, Cruz MR, Garsin DA, Lorenz MC. Enterococcus faecalis bacteriocin EntV inhibits hyphal morphogenesis, biofilm formation, and virulence of Candida albicans. Proc Natl Acad Sci USA.2017; 114(17):4507–4512. doi: 10.1073/pnas.1620432114 28396417
57. Ringø E, Løvmo L, Kristiansen M, Bakken Y, Salinas I, Myklebust R et al. Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: A review. J Aquac Res Dev. 2010; 41:451–467.
58. Kaktcham PM, Temgoua JB, Zambou FN, Diaz-Ruiz G, Wacher C, Pérez-Chabela ML. In vitro evaluation of the probiotic and safety properties of bacteriocinogenic and non-bacteriocinogenic lactic acid bacteria from the intestines of Nile tilapia and common carp for their use as probiotics in aquaculture. Probiotics Antimicrob Proteins.2018; 10(1):98–109. doi: 10.1007/s12602-017-9312-8 28752423
59. Leccese Terraf MC, Mendoza LM, Juárez Tomás MS, Silva C, Nader-Macías ME. Phenotypic surface properties (aggregation, adhesion and biofilm formation) and presence of related genes in beneficial vaginal lactobacilli. J Appl Microbiol.2014; 117(6):1761–1772. doi: 10.1111/jam.12642 25195810
60. Živković M, Miljković MS, Ruas-Madiedo P, Markelić MB, Veljović K, Tolinački M et al. EPS-SJ exopolysaccharide produced by the strain Lactobacillus paracasei subsp. paracasei BGSJ2-8 is involved in adhesion to epithelial intestinal cells and decrease on E. coli association to Caco-2 cells. Front Microbiol.2016; 7:286. doi: 10.3389/fmicb.2016.00286 27014210
61. Watters C, Fleming D, Bishop D, Rumbaugh KP. Host responses to biofilm. Prog Mol Biol Transl Sci. 2016; 142:193–239. doi: 10.1016/bs.pmbts.2016.05.007 27571696
62. Amaral-Machado L, Xavier-Júnior FH, Rutckeviski R, Morais AR, Alencar ÉN, Dantas TRet al. New trends on antineoplastic therapy research: bullfrog (Rana catesbeiana Shaw) oil nanostructured systems. Molecules.2016; 21(5).
63. Garner TW, Perkins MW, Govindarajulu P, Seglie D, Walker S, Cunningham AAet al. The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biol Lett.2006; 2(3):455–459. doi: 10.1098/rsbl.2006.0494 17148429
64. Schloegel LM, Ferreira CM, James TY, Hipolito M, Longcore J. E., Hyatt A. D. et al. The North American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil. Anim Conserv.2009;13(s1):53–61.
65. Bataille A, Fong JJ, Cha M, Wogan GOU, Baek HJ, Lee H et al. Genetic evidence for a high diversity and wide distribution of endemic strains of the pathogenic chytrid fungus Batrachochytrium dendrobatidis in wild Asian amphibians. Mol Ecol.2013; 22(16):4196–4209. doi: 10.1111/mec.12385 23802586
66. Schloegel LM, Toledo LF, Longcore JE, Greenspan SE, Vieira CA, Lee M et al. Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol Ecol 2012; 21(21):5162–5177. doi: 10.1111/j.1365-294X.2012.05710.x 22857789
67. FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pd
68. de Man JC, Rogosa M, Sharpe ME. Medium for the cultivation of lactobacilli. J App Bacteriol.1960; 23:130–135.
69. Rosenblum EB, James TY, Zamudio KR, Poorten TJ, Ilut D, Rodriguez D et al. Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc Natl Acad Sci USA.2013; 110(23):9385–9390. doi: 10.1073/pnas.1300130110 23650365
70. Mesquita AFC, Lambertini C, Lyra M, Malagoli LR, James TY, Toledo LFet al. Low resistance to chytridiomycosis in direct-developing amphibians. Sci Rep.2017; 7(1):16605. doi: 10.1038/s41598-017-16425-y 29192210
71. Valenzuela-Sánchez A, O'Hanlon SJ, Alvarado-Rybak M, Uribe-Rivera DE, Cunningham AA, Fisher MC et al. Genomic epidemiology of the emerging pathogen Batrachochytrium dendrobatidis from native and invasive amphibian species in Chile. Transbound Emerg Dis.2018; 65(2):309–314. doi: 10.1111/tbed.12775 29205924
72. O'Hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B, Bataille A et al. Recent Asian origin of chytrid fungi causing global amphibian declines. Science.2018; 360(6389):621–627. doi: 10.1126/science.aar1965 29748278
73. Rosenberg M, Doyle RJ. Microbial cell surface hydrophobicity: History, measurement, and significance. MBio.1990; 1–38.
74. Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J Clin Pathol.1989; 42:872–874. doi: 10.1136/jcp.42.8.872 2475530
75. Mozzi F, Gerbino E, Font de Valdez G, Torino MI. Functionality of exopolysaccharides produced by lactic acid bacteria in an in vitro gastric system. J Appl Microbiol.2009; 107(1):56–64. doi: 10.1111/j.1365-2672.2009.04182.x 19291238
76. Leccese Terraf MC, Juárez Tomás MS, Nader-Macías ME, Silva C. Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components. J Appl Microbiol.2012; 113(6):1517–1529. doi: 10.1111/j.1365-2672.2012.05429.x 22897406
77. Borges SF, Silva JG, Teixeira PC. Survival and biofilm formation of Listeria monocytogenes in simulated vaginal fluid: influence of pH and strain origin. FEMS Immunol Med Microbiol.2011; 62(3):315–320. doi: 10.1111/j.1574-695X.2011.00815.x 21569122
78. Reyes-Escogido L, Balam-Chi M, Rodríguez-Buenfil I, Valdés J, Kameyama L, Martínez-Pérez F. Purification of bacterial genomic DNA in less than 20 min using chelex-100 microwave: examples from strains of lactic acid bacteria isolated from soil samples. Antonie van Leeuwenhoek.2010; 98(4):465–474. doi: 10.1007/s10482-010-9462-0 20556655
79. Fraga J, Pelayo L, Sariego I, Rojas L, Nuñez FA. RAPD technique: Obtention genetic markers of pathogenesis in infections by Trichomonas vaginalis and Giardia lamblia. Rev Soc Ven Microbiol.2004; 24(1):238–245.
80. Huey B, Hall J. Hypervariable DNA fingerprinting in Escherichia coli: minisatellite probe from bacteriophage M13. J Bacteriol.1989; 171(5):2528–2532. doi: 10.1128/jb.171.5.2528-2532.1989 2565332
81. Heras J, Domínguez C, Mata E, Pascual V, Lozano C, Torres C et al. Gel J–a tool for analysing DNA fingerprint gel images. BMC Bioinformatics.2015; 16:270. doi: 10.1186/s12859-015-0703-0 26307353
82. Pospiech A, Neumann B. A versatile quick-prep of genomic DNA from gram-positive bacteria. Trends Genet.1995; 11(6):217–218. doi: 10.1016/s0168-9525(00)89052-6 7638902
83. Kullen MJ, Sanozky-Dawes RB, Crowell DC, Klaenhammer TR. Use of the DNA sequence of variable regions of the 16S rRNA gene for rapid and accurate identification of bacteria in the Lactobacillus acidophilus complex. J Appl Microbiol.2000; 89:511–516. doi: 10.1046/j.1365-2672.2000.01146.x 11021584
84. Becker MH, Walke JB, Cikanek S, Savage AE, Mattheus N, Santiago CNet al. Composition of symbiotic bacteria predicts survival in Panamanian golden frogs infected with a lethal fungus. Proc R Soc Lond.2015; 282: 20142881.
85. Becker MH, Walke JB, Murrill L, Woodhams DC, Reinert LK, Rollins-Smith LAet al. Phylogenetic distribution of symbiotic bacteria from Panamanian amphibians that inhibit growth of the lethal fungal pathogen Batrachochytrium dendrobatidis. Mol Ecol.2015; 24:1628–1641. doi: 10.1111/mec.13135 25737297
86. Antwis RE, Harrison XA. Probiotic consortia are not uniformly effective against different amphibian chytrid pathogen isolates. Mol Ecol.2017; 27(2):577–589.
87. Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. J Antimicrob Chemother.2012; 67:1589–1596. doi: 10.1093/jac/dks129 22532463
88. Guimarães A, Venancio A, Abrunhosa L. Antifungal effect of organic acids from lactic acid bacteria on Penicillium nordicum. Food Addit Contam Part A Chem Anal Control Expo Risk Assess.2018; 35(9):1803–1818. doi: 10.1080/19440049.2018.1500718 30016195
89. Van Rooij P, Pasmans F, Coen Y, Martel A. Efficacy of chemical disinfectants for the containment of the salamander chytrid fungus Batrachochytrium salamandrivorans. PLoS One.2017; 12(10):e0186269. doi: 10.1371/journal.pone.0186269 29023562
90. Woodhams DC, Bletz M, Kueneman J, McKenzie V. Managing amphibian disease with skin microbiota. Trends Microbiol.2016; 24(3):161–164. doi: 10.1016/j.tim.2015.12.010 26916805
91. Ly MH, Vo H, Le TM, Belin JM, Waché Y. Diversity of the surface properties of lactococci and consequences on adhesion to food components. Colloids Surf B Biointerfaces.2006; 52(2):149–153. doi: 10.1016/j.colsurfb.2006.04.015 16844359
92. Etzold S, Juge N. Structural insights into bacterial recognition of intestinal mucins. Curr Opin Struct Biol.2014; 28:23–31. doi: 10.1016/j.sbi.2014.07.002 25106027
93. Mercier-Bonin M, Chapot-Chartier M-P. Surface proteins of Lactococcus lactis: bacterial resources for muco-adhesion in the gastrointestinal tract. Front Microbiol.2017; 8:2247. doi: 10.3389/fmicb.2017.02247 29218032
94. Ofek I, Doyle R. Methods, models and analysis of bacterial adhesion. In: Ofek I, Doyle R, editors. Bacterial adhesion to cells and tissues. Chapman and Hall, New York.1994. pp.16–20.
95. Sánchez-Ortiz AC, Luna-González A, Campa-Córdova A I, Escamilla-Montes R, Flores-Miranda MC, Mazón-Suástegui JM. Isolation and characterization of potential probiotic bacteria from pustulose ark (Anadara tuberculosa) suitable for shrimp farming. Lat Am J Aquat Res.2015; 43(1):123–136.
96. Fontana C, Cocconcelli PS, Vignolo G. Direct molecular approach to monitoring bacterial colonization on vacuum-packaged beef. Appl Environ Microbiol. 2006; 72(8):5618–5622. doi: 10.1128/AEM.00029-06 16885317
97. Berger L, Hyatt AD, Speare R, Longcore JE. Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Organ.2005; 68:51–63. doi: 10.3354/dao068051 16465834
98. Otero MC, Ocaña VS, Nader-Macías ME. Bacterial surface characteristics applied to selection of probiotic microorganisms. Methods Mol Biol. 2004; 268:435–440. doi: 10.1385/1-59259-766-1:435 15156054
99. Servin AL. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol Rev.2004; 28:405–440. doi: 10.1016/j.femsre.2004.01.003 15374659
100. Lebeer S, Verhoeven SLA, Francius G, Schoofs G, Lambrichts I, Dufrêne Y. Identification of a gene cluster for the biosynthesis of a long, galactose-rich exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl Environ Microbiol.2009; 75(11): 3554–3563. doi: 10.1128/AEM.02919-08 19346339
101. Wang X, Shao C, Liu L, Guo X, Xu Y, Lü X et al. Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int J Biol Macromol.2017; 103:1173–1184. doi: 10.1016/j.ijbiomac.2017.05.118 28551435
102. Tu NHK, Dat NV, Canh LV, Vinh DTT. Detection of the potential inactivation of Tetrodotoxin by lactic acid bacterial exopolysaccharide. Toxins.2018; 10(7).
103. Puertas AI, Ibarburua I, Elizaquivel P, Zuriarraina A, Berregia I, López P. Disclosing diversity of exopolysaccharide-producing lactobacilli from Spanish natural ciders. Int J Food Sci Technol.2018; 90:469–474.
104. Ruas-Madiedo P, Gueimonde M, Margolles A, de los Reyes-Gavilán CG, Salminen S. Exopolysaccharides produced by probiotic strains modifies the adhesion of probiotics and enteropathogens to human intestinal mucus. J Food Prot.2006; 69:2011–2015. doi: 10.4315/0362-028x-69.8.2011 16924934
105. Polak-Berecka M, Wa´sko A, Paduch R, Skrzypek T, Sroka-Bartnicka A. The effect of cell surface components on adhesion ability of Lactobacillus rhamnosus. Antonie van Leeuwenhoek.2014; 106: 751–762. doi: 10.1007/s10482-014-0245-x 25090959
106. Dertli E, Mayer MJ Narbad A. Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiol.2015; 15:8. doi: 10.1186/s12866-015-0347-2 25648083
107. Martín R, Soberón N, Vaneechoutte M, Flórez AB, Vázquez F, Suárez JE. Characterization of indigenous vaginal lactobacilli from healthy women as probiotic candidates. Int Microbiol.2008; 11:261–266. doi: 10.2436/20.1501.01.70 19204898
108. Borisa S, Barbés C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infect.2017; 2(5):543–546.
109. Rickard AH, Gilbert P, High NJ, Kolenbrander PE, Handley PS. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol.2003; 11: 94–100. doi: 10.1016/s0966-842x(02)00034-3 12598132
110. Lebeer S, Verhoeven TLA, Perea Velez M, Vanderleyden J, De Keersmaecker SCJ. Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. J Appl Environ Microbiol.2007; 73(21):6768–6775.
111. Lamari F, Mahdhi A, Chakroun I, Esteban MA, Mazurais D, Amina B et al. Interactions between candidate probiotics and the immune and antioxidative responses of European sea bass (Dicentrarchus labrax) larvae. J Fish Dis.2016; (39):1421–1432.
112. Silva LF, Casella T, Gomes ES, Nogueira MC, De Dea Lindner J, Penna AL. Diversity of lactic acid bacteria isolated from Brazilian water buffalo mozzarella cheese. J Food Sci.2015; 80(2):M411–417. doi: 10.1111/1750-3841.12771 25597646
113. Touret T, Oliveira M, Semedo-Lemssaddek T. Putative probiotic lactic acid bacteria isolated from sauerkraut fermentations. PLoS One.2018; 13(9):e0203501. doi: 10.1371/journal.pone.0203501 30192827
114. Mastromarino P, Capobianco D, Miccheli A, Praticò G, Campagna G, Laforgia N et al. Administration of a multistrain probiotic product (VSL#3) to women in the perinatal period differentially affects breast milk beneficial microbiota in relation to mode of delivery. Pharmacol Res.2015; (95–96):63–70.
115. Virchenko OV, Falalyeyeva TM, Beregova TV, Spivak MY, Lazarenko LM, Demchenko OM. Effects of mono-, poly- and composite probiotics on the ulceration caused by restraint stress. Fiziol Zh. 2015; 61(1):35–41. 26040033
116. Kobyliak N, Falalyeyeva T, Virchenko O, Mykhalchyshyn G, Bodnar P, Spivak M et al. Comparative experimental investigation on the efficacy of mono- and multiprobiotic strains in non-alcoholic fatty liver disease prevention. BMC Gastroenterol.2016; 16:34. doi: 10.1186/s12876-016-0451-2 26976285
Článek vyšel v časopise
PLOS One
2019 Číslo 9