Identification of olfactory genes and functional analysis of BminCSP and BminOBP21 in Bactrocera minax
Autoři:
Penghui Xu aff001; Yaohui Wang aff001; Mazarin Akami aff001; Chang-Ying Niu aff001
Působiště autorů:
Department of Plant Protection, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
aff001
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222193
Souhrn
Insects possess highly developed olfactory systems which play pivotal roles in its ecological adaptations, host plant location, and oviposition behavior. Bactrocera minax is an oligophagous tephritid insect whose host selection, and oviposition behavior largely depend on the perception of chemical cues. However, there have been very few reports on molecular components related to the olfactory system of B. minax. Therefore, the transcriptome of B. minax were sequenced in this study, with 1 candidate chemosensory protein (CSP), 21 candidate odorant binding proteins (OBPs), 53 candidate odorant receptors (ORs), 29 candidate ionotropic receptors (IRs) and 4 candidate sensory neuron membrane proteins (SNMPs) being identified. After that, we sequenced the candidate olfactory genes and performed phylogenetic analysis. qRT-PCR was used to express and characterize 9 genes in olfactory and non-olfactory tissues. Compared with GFP-injected fly (control), dsOBP21-treated B. minax and dsCSP-treated B. minax had lower electrophysiological response to D-limonene (attractant), suggesting the potential involvement of BminOBP21 and BminCSP genes in olfactory perceptions of the fly. Our study establishes the molecular basis of olfaction, tributary for further functional analyses of chemosensory processes in B. minax.
Klíčová slova:
Biology and life sciences – Biochemistry – Proteins – Odorant binding proteins – Pheromones – Insect pheromones – Anatomy – Animal anatomy – Zoology – Entomology – Neuroscience – Sensory perception – Psychology – Smell – Computational biology – Genetics – Genomics – Genome analysis – Transcriptome analysis – Gene expression – Evolutionary biology – Evolutionary systematics – Phylogenetics – Phylogenetic analysis – Taxonomy – Organisms – Eukaryota – Plants – Medicine and health sciences – Animal antennae – Social sciences – Computer and information sciences – Data management
Zdroje
1. Fleischer J, Krieger J. Insect Pheromone Receptors–Key Elements in Sensing Intraspecific Chemical Signals. Frontiers in Cellular Neuroscience. 2018; 12. https://doi.org/10.3389/fncel.2018.00425.
2. Niehuis O, Buellesbach J, Gibson JD, Pothmann D, Hanner C, Mutti NS, et al. Behavioural and genetic analyses of Nasonia shed light on the evolution of sex pheromones. Nature. 2013; 494: 345. https://doi.org/10.1038/nature11838 https://www.nature.com/articles/nature11838#supplementary-information. doi: 10.1038/nature11838 23407492
3. Pickett JA, Weston LA. Possibilities for rationally exploiting co-evolution in addressing resistance to insecticides, and beyond. Pestic Biochem Physiol. 2018; 151: 18–24. https://doi.org/10.1016/j.pestbp.2018.03.007 doi: 10.1016/j.pestbp.2018.03.007 30704708.
4. Miyazaki H, Otake J, Mitsuno H, Ozaki K, Kanzaki R, Chui-Ting Chieng A, et al. Functional characterization of olfactory receptors in the Oriental fruit fly Bactrocera dorsalis that respond to plant volatiles. Insect Biochem Mol Biol. 2018; 101: 32–46. https://doi.org/10.1016/j.ibmb.2018.07.002 doi: 10.1016/j.ibmb.2018.07.002 30026095.
5. Li Q, Liberles SD. Aversion and attraction through olfaction. Curr Biol. 2015; 25(3): R120–R129. https://doi.org/10.1016/j.cub.2014.11.044 doi: 10.1016/j.cub.2014.11.044 25649823.
6. Clark JT, Ray A. Olfactory Mechanisms for Discovery of Odorants to Reduce Insect-Host Contact. J Chem Ecol. 2016; 42(9): 919–930. https://doi.org/10.1007/s10886-016-0770-3 doi: 10.1007/s10886-016-0770-3 27628342.
7. Butterwick JA, del Mármol J, Kim KH, Kahlson MA, Rogow JA, Walz T, et al. Cryo-EM structure of the insect olfactory receptor Orco. Nature. 2018; 560(7719): 447–452. https://doi.org/10.1038/s41586-018-0420-8. doi: 10.1038/s41586-018-0420-8 30111839
8. Crowley-Gall A, Shaw M, Rollmann SM. Host Preference and Olfaction in Drosophila mojavensis. J Hered. 2019; 110(1): 68–79. https://doi.org/10.1093/jhered/esy052 doi: 10.1093/jhered/esy052 30299456.
9. Guo W, Ren D, Zhao L, Jiang F, Song J, Wang X, et al. Identification of Odorant-Binding Proteins (OBPs) and Functional Analysis of Phase-Related OBPs in the Migratory Locust. Front Physiol. 2018; 9: 984. https://doi.org/10.3389/fphys.2018.00984 doi: 10.3389/fphys.2018.00984 30079035.
10. Yan H, Opachaloemphan C, Mancini G, Yang H, Gallitto M, Mlejnek J, et al. An Engineered orco Mutation Produces Aberrant Social Behavior and Defective Neural Development in Ants. Cell. 2017; 170(4): 736–747 e739. https://doi.org/10.1016/j.cell.2017.06.051 doi: 10.1016/j.cell.2017.06.051 28802043.
11. Carraher C, Dalziel J, Jordan MD, Christie DL, Newcomb RD, Kralicek AV. Towards an understanding of the structural basis for insect olfaction by odorant receptors. Insect Biochem Mol Biol. 2015; 66: 31–41. https://doi.org/10.1016/j.ibmb.2015.09.010 doi: 10.1016/j.ibmb.2015.09.010 26416146.
12. Fleischer J, Pregitzer P, Breer H, Krieger J. Access to the odor world: olfactory receptors and their role for signal transduction in insects. Cellular and Molecular Life Sciences. 2018; 75(3): 485–508. https://doi.org/10.1007/s00018-017-2627-5. doi: 10.1007/s00018-017-2627-5 28828501
13. Pelosi P, Iovinella I, Zhu J, Wang G, Dani FR. Beyond chemoreception: diverse tasks of soluble olfactory proteins in insects. Biol Rev Camb Philos Soc. 2018; 93(1): 184–200. https://doi.org/10.1111/brv.12339 doi: 10.1111/brv.12339 28480618.
14. Falchetto M, Ciossani G, Scolari F, Di Cosimo A, Nenci S, Field LM, et al. Structural and biochemical evaluation of Ceratitis capitata odorant-binding protein 22 affinity for odorants involved in intersex communication. Insect Mol Biol. 2018. https://doi.org/10.1111/imb.12559 30548711.
15. Liu Z, Smagghe G, Lei Z, Wang JJ. Identification of Male- and Female-Specific Olfaction Genes in Antennae of the Oriental Fruit Fly (Bactrocera dorsalis). PLoS One. 2016; 11(2): e0147783. https://doi.org/10.1371/journal.pone.0147783 doi: 10.1371/journal.pone.0147783 26845547.
16. Borrero-Echeverry F, Bengtsson M, Nakamuta K, Witzgall P. Plant odor and sex pheromone are integral elements of specific mate recognition in an insect herbivore. Evolution. 2018; 72(10): 2225–2233. https://doi.org/10.1111/evo.13571 doi: 10.1111/evo.13571 30095166.
17. Crava CM, Sassu F, Tait G, Becher PG, Anfora G. Functional transcriptome analyses of Drosophila suzukii antennae reveal mating-dependent olfaction plasticity in females. Insect Biochem Mol Biol. 2019; 105: 51–59. https://doi.org/10.1016/j.ibmb.2018.12.012 doi: 10.1016/j.ibmb.2018.12.012 30590188.
18. Xia Y, Ma X, Hou B, Ouyang G. A Review of Bactrocera minax (Diptera: Tephritidae) in China for the Purpose of Safeguarding. Advances in Entomology. 2018; 06(02): 35–61. https://doi.org/10.4236/ae.2018.62005.
19. Chen Z, Dong Y, Wang Y, Andongma AA, Rashid MA, Krutmuang P, et al. Pupal diapause termination in Bactrocera minax: an insight on 20-hydroxyecdysone induced phenotypic and genotypic expressions. Sci Rep. 2016; 6: 27440. https://doi.org/10.1038/srep27440 doi: 10.1038/srep27440 27273028.
20. Dong Y-C, Wang Z-J, Clarke AR, Pereira R, Desneux N, Niu C-Y. Pupal diapause development and termination is driven by low temperature chilling in Bactrocera minax. Journal of Pest Science. 2013; 86(3): 429–436. https://doi.org/10.1007/s10340-013-0493-y.
21. Dong Y, Desneux N, Lei C, Niu C. Transcriptome characterization analysis of Bactrocera minax and new insights into its pupal diapause development with gene expression analysis. Int J Biol Sci. 2014; 10(9): 1051–1063. https://doi.org/10.7150/ijbs.9438 doi: 10.7150/ijbs.9438 25285037.
22. Wang J, Xiong KC, Liu YH. De novo Transcriptome Analysis of Chinese Citrus Fly, Bactrocera minax (Diptera: Tephritidae), by High-Throughput Illumina Sequencing. PLoS One. 2016; 11(6): e0157656. https://doi.org/10.1371/journal.pone.0157656 doi: 10.1371/journal.pone.0157656 27331903.
23. Zhou X-W, Niu C-Y, Han P, Desneux N. Field Evaluation of Attractive Lures for the Fruit Fly Bactrocera minax (Diptera: Tephritidae) and Their Potential Use in Spot Sprays in Hubei Province (China). Journal of Economic Entomology. 2012; 105(4): 1277–1284. https://doi.org/10.1603/ec12020. 22928307
24. Hou B-H, Ouyang G-C, Xiao F-L, Lu Y-Y, Zhang Z-G, Tian J, et al. Field Evaluation of Eight Attractant Traps for Bactrocera minax (Diptera: Tephritidae) in a Navel Orange Orchard in China. Florida Entomologist. 2018; 101(2): 260–264. https://doi.org/10.1653/024.101.0217.
25. Liu L, Zhou Q. Olfactory response of female Bactrocera minax to chemical components of the preference host citrus volatile oils. Journal of Asia-Pacific Entomology. 2016; 19(3): 637–642. https://doi.org/10.1016/j.aspen.2016.05.008.
26. Wang Y, Andongma AA, Dong Y, Chen Z, Xu P, Ren X, et al. Rh6 gene modulates the visual mechanism of host utilization in fruit fly Bactrocera minax. Pest Manag Sci. 2018. https://doi.org/10.1002/ps.5278 30471178.
27. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology. 2011; 29: 644. https://doi.org/10.1038/nbt.1883 https://www.nature.com/articles/nbt.1883#supplementary-information. doi: 10.1038/nbt.1883 21572440
28. Lopez-Maestre H, Brinza L, Marchet C, Kielbassa J, Bastien S, Boutigny M, et al. SNP calling from RNA-seq data without a reference genome: identification, quantification, differential analysis and impact on the protein sequence. Nucleic Acids Res. 2016; 44(19): e148. https://doi.org/10.1093/nar/gkw655 doi: 10.1093/nar/gkw655 27458203.
29. Cao D, Liu Y, Wei J, Liao X, Walker WB, Li J, et al. Identification of candidate olfactory genes in Chilo suppressalis by antennal transcriptome analysis. Int J Biol Sci. 2014; 10(8): 846–860. https://doi.org/10.7150/ijbs.9297 doi: 10.7150/ijbs.9297 25076861.
30. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol. 2016; 33(7): 1870–1874. https://doi.org/10.1093/molbev/msw054 doi: 10.1093/molbev/msw054 27004904.
31. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4): 402–408. https://doi.org/10.1006/meth.2001.1262 11846609.
32. Xiong KC, Wang J, Li JH, Deng YQ, Pu P, Fan H, et al. RNA interference of a trehalose-6-phosphate synthase gene reveals its roles during larval-pupal metamorphosis in Bactrocera minax (Diptera: Tephritidae). J Insect Physiol. 2016; 91–92: 84–92. https://doi.org/10.1016/j.jinsphys.2016.07.003 doi: 10.1016/j.jinsphys.2016.07.003 27405007.
33. Pelletier J, Guidolin A, Syed Z, Cornel AJ, Leal WS. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J Chem Ecol. 2010; 36(3): 245–248. https://doi.org/10.1007/s10886-010-9762-x doi: 10.1007/s10886-010-9762-x 20191395.
34. Wu Z, Zhang H, Wang Z, Bin S, He H, Lin J. Discovery of Chemosensory Genes in the Oriental Fruit Fly, Bactrocera dorsalis. PLoS One. 2015; 10(6): e0129794. https://doi.org/10.1371/journal.pone.0129794 doi: 10.1371/journal.pone.0129794 26070069.
35. Li S, Zhou C, Zhou Y. Olfactory co-receptor Orco stimulated by Rice stripe virus is essential for host seeking behavior in small brown planthopper. Pest Manag Sci. 2019; 75(1): 187–194. https://doi.org/10.1002/ps.5086 doi: 10.1002/ps.5086 29797766.
36. Brand P, Robertson HM, Lin W, Pothula R, Klingeman WE, Jurat-Fuentes JL, et al. The origin of the odorant receptor gene family in insects. Elife. 2018; 7. https://doi.org/10.7554/eLife.38340 doi: 10.7554/eLife.38340 30063003.
37. DeGennaro M, McBride CS, Seeholzer L, Nakagawa T, Dennis EJ, Goldman C, et al. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature. 2013; 498(7455): 487–491. https://doi.org/10.1038/nature12206 doi: 10.1038/nature12206 23719379.
38. Zhang G, Chen J, Wang F, Gui L, Zhang J. Characterization and Levels of Expression of Sensory Neuron Membrane Proteins in the Adult Citrus Fruit Fly (Diptera: Tephritidae). J Insect Sci. 2018; 18(6). https://doi.org/10.1093/jisesa/iey117 doi: 10.1093/jisesa/iey117 30481331.
39. Gadenne C, Barrozo RB, Anton S. Plasticity in Insect Olfaction: To Smell or Not to Smell? Annu Rev Entomol. 2016; 61: 317–333. https://doi.org/10.1146/annurev-ento-010715-023523 doi: 10.1146/annurev-ento-010715-023523 26982441.
40. Zhang J, Luo D, Wu P, Li H, Zhang H, Zheng W. Identification and expression profiles of novel odorant binding proteins and functional analysis of OBP99a in Bactrocera dorsalis. Arch Insect Biochem Physiol. 2018; 98(1): e21452. https://doi.org/10.1002/arch.21452 doi: 10.1002/arch.21452 29450902.
41. Kumar MS, Chen KC. Evolution of animal Piwi-interacting RNAs and prokaryotic CRISPRs. Brief Funct Genomics. 2012; 11(4): 277–288. https://doi.org/10.1093/bfgp/els016 doi: 10.1093/bfgp/els016 22539610.
42. Antony B, Johny J, Aldosari SA. Silencing the Odorant Binding Protein RferOBP1768 Reduces the Strong Preference of Palm Weevil for the Major Aggregation Pheromone Compound Ferrugineol. Front Physiol. 2018; 9: 252. https://doi.org/10.3389/fphys.2018.00252 doi: 10.3389/fphys.2018.00252 29618982.
43. Zhang R, Wang B, Grossi G, Falabella P, Liu Y, Yan S, et al. Molecular Basis of Alarm Pheromone Detection in Aphids. Curr Biol. 2017; 27(1): 55–61. https://doi.org/10.1016/j.cub.2016.10.013 doi: 10.1016/j.cub.2016.10.013 27916525.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Proč jsou nemocnice nepřítelem spánku? A jak to změnit?
- Dlouhodobá ketodieta může poškozovat naše orgány
- „Jednohubky“ z klinického výzkumu – 2024/42
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- MUDr. Jana Horáková: Remise již dosahujeme u více než 80 % pacientů s myastenií