Comparison of post-traumatic changes in circulating and bone marrow leukocytes between BALB/c and CD-1 mouse strains


Autoři: Tanja Spenlingwimmer aff001;  Johannes Zipperle aff001;  Mohammad Jafarmadar aff001;  Marcin Filip Osuchowski aff001;  Susanne Drechsler aff001
Působiště autorů: Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Research Center, Vienna, Austria aff001
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222594

Souhrn

This manuscript emerged from a larger third-party funded project investigating a new poly-trauma model and its influence upon secondary sepsis. The present sub-study compared selected leukocyte subpopulations in the circulation and bone marrow after polytrauma in BALB/c versus CD-1 mice. Animals underwent unilateral femur fracture, splenectomy and hemorrhagic shock. We collected blood and bone marrow for flow cytometry analysis at 24h and 48h post-trauma. Circulating granulocytes (Ly6G+CD11+) increased in both strains after trauma. Only in BALB/c mice circulating CD8+ T-lymphocytes decreased within 48h by 30%. Regulatory T-cells (Tregs, CD4+CD25+CD127low) increased in both strains by approx. 32%. Circulating Tregs and lymphocytes (CD11b-Ly6G-MHC-2+) were always at least 1.5-fold higher in BALB/c, while the bone marrow MHC-2 expression decreased in CD-1 mice (p<0.05). Overall, immune responses to polytrauma were similar in both strains. Additionally, BALB/c expressed higher level of circulating regulatory T-cells and MHC-2-positive lymphocytes compared to CD-1 mice.

Klíčová slova:

Biology and life sciences – Cell biology – Cellular types – Animal cells – Blood cells – White blood cells – T cells – Lymphocytes – Immune cells – Bone marrow – Anatomy – Body fluids – Blood – Physiology – Genetics – Heredity – Inbreeding – Medicine and health sciences – Immunology – Immune system – Immune physiology – Research and analysis methods – Animal studies – Experimental organism systems – Inbred strains – Model organisms – Mouse models – Animal models


Zdroje

1. Worldwide Animal Statistics. In: Worldwide Animal Statistics [Internet]. Available: https://speakingofresearch.com/facts/animal-research-statistics.

2. European Commission. Seventh Report on the Statistics on the Number of Animals used for Experimental and ohter Scientific Purposes in the Member States of the European Union [Internet]. 2016. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52013DC0859

3. Johnson M. Laboratory Mice and Rats. Mater Methods. 2012;2. doi: 10-13070/mm.en.2.113

4. Casellas J. Inbred mouse strains and genetic stability: a review. animal. 2011;5: 1–7. doi: 10.1017/S1751731110001667 22440695

5. Festing MFW. Invited review: Inbred strains should replace outbred stocks in toxicology, safety testing, and drug development. Toxicol Pathol. 2010;38: 681–690. doi: 10.1177/0192623310373776 20562325

6. Srivastava A, Morgan AP, Najarian ML, Sarsani VK, Sigmon JS, Shorter JR, et al. Genomes of the Mouse Collaborative Cross. Genetics. 2017;206: 537–556. doi: 10.1534/genetics.116.198838 28592495

7. Chick JM, Munger SC, Simecek P, Huttlin EL, Choi K, Gatti DM, et al. Defining the consequences of genetic variation on a proteome-wide scale. Nature. 2016;534: 500–5. doi: 10.1038/nature18270 27309819

8. Nashef A, Agbaria M, Shusterman A, Lorè NI, Bragonzi A, Wiess E, et al. Dissection of Host Susceptibility to Bacterial Infections and Its Toxins. 2017. pp. 551–578. doi: 10.1007/978-1-4939-6427-7_27 27933544

9. Smith CM, Proulx MK, Olive AJ, Laddy D, Mishra BB, Moss C, et al. Tuberculosis Susceptibility and Vaccine Protection Are Independently Controlled by Host Genotype. MBio. 2016;7. doi: 10.1128/mBio.01516-16 27651361

10. Winter JM, Gildea DE, Andreas JP, Gatti DM, Williams KA, Lee M, et al. Mapping Complex Traits in a Diversity Outbred F1 Mouse Population Identifies Germline Modifiers of Metastasis in Human Prostate Cancer. Cell Syst. 2017;4: 31–45.e6. doi: 10.1016/j.cels.2016.10.018 27916600

11. Brett SJ, Cox FE. Immunological aspects of Giardia muris and Spironucleus muris infections in inbred and outbred strains of laboratory mice: a comparative study. Parasitology. 1982;85 (Pt 1): 85–99. Available: http://www.ncbi.nlm.nih.gov/pubmed/6214757

12. Ehrnthaller C, Huber-Lang M, Kovtun A, Rapp AE, Kemmler J, Gebhard F, et al. C5aR inhibition in the early inflammatory phase does not affect bone regeneration in a model of uneventful fracture healing. Eur J Med Res. 2016;21: 42. doi: 10.1186/s40001-016-0236-7 27784330

13. Jensen VS, Porsgaard T, Lykkesfeldt J, Hvid H. Rodent model choice has major impact on variability of standard preclinical readouts associated with diabetes and obesity research. Am J Transl Res. 2016;8: 3574–84. 27648148

14. Lueker DC, Helper DI. Differences in immunity to Nematospiroides dubius in inbred and outbred mice. J Parasitol. 1975;61: 158–9. 1167907

15. Morgan AP, Fu C-P, Kao C-Y, Welsh CE, Didion JP, Yadgary L, et al. The Mouse Universal Genotyping Array: From Substrains to Subspecies. G3&#58; Genes|Genomes|Genetics. 2016;6: 263–279. doi: 10.1534/g3.115.022087 26684931

16. Richardson SH, Kuhn RE. Studies on the genetic and cellular control of sensitivity to enterotoxins in the sealed adult mouse model. Infect Immun. 1986;54: 522–8. 3533783

17. Turnbull IR, Ghosh S, Fuchs A, Hilliard J, Davis CG, Bochicchio G V., et al. Polytrauma Increases Susceptibility to Pseudomonas Pneumonia in Mature Mice. SHOCK. 2016;45: 555–563. doi: 10.1097/SHK.0000000000000538 26863126

18. Winston CN, Noël A, Neustadtl A, Parsadanian M, Barton DJ, Chellappa D, et al. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma. Am J Pathol. 2016;186: 552–567. doi: 10.1016/j.ajpath.2015.11.006 26857506

19. Bricker-Anthony C, Rex TS. Neurodegeneration and Vision Loss after Mild Blunt Trauma in the C57Bl/6 and DBA/2J Mouse. Lewin AS, editor. PLoS One. 2015;10: e0131921. doi: 10.1371/journal.pone.0131921 26148200

20. Ma L, Ma J-W, Deitch EA, Specian RD, Berg RD. Genetic Susceptibility to Mucosal Damage Leads to Bacterial Translocation in a Murine Burn Model. J Trauma Inj Infect Crit Care. 1989;29: 1245–1251. doi: 10.1097/00005373-198909000-00010 2769809

21. Rai D, Pham N-LL, Harty JT, Badovinac VP. Tracking the Total CD8 T Cell Response to Infection Reveals Substantial Discordance in Magnitude and Kinetics between Inbred and Outbred Hosts. J Immunol. 2009;183: 7672–7681. doi: 10.4049/jimmunol.0902874 19933864

22. Cahill LS, Laliberté CL, Liu XJ, Bishop J, Nieman BJ, Mogil JS, et al. Quantifying Blood-Spinal Cord Barrier Permeability after Peripheral Nerve Injury in the Living Mouse. Mol Pain. 2014;10: 1744-8069-10–60. doi: 10.1186/1744-8069-10-60 25216623

23. Drechsler S, Zipperle J, Rademann P, Jafarmadar M, Klotz A, Bahrami S, et al. Splenectomy modulates early immuno-inflammatory responses to trauma-hemorrhage and protects mice against secondary sepsis. Sci Rep. 2018;8: 1–12. doi: 10.1038/s41598-017-17765-5

24. Vester H, Dargatz P, Huber-Wagner S, Biberthaler P, Van Griensven M. HLA-DR expression on monocytes is decreased in polytraumatized patients. Eur J Med Res. 2015;20: 1–9. doi: 10.1186/s40001-014-0074-4

25. Menges T, Engel J, Welters I, Wagner R-M, Little S, Ruwoldt R, et al. Changes in blood lymphocyte populations after multiple trauma. Crit Care Med. 1999;27: 733–740. doi: 10.1097/00003246-199904000-00026 10321662

26. Venet F, Chung C-S, Kherouf H, Geeraert A, Malcus C, Poitevin F, et al. Increased circulating regulatory T cells (CD4+CD25+CD127−) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med. 2009;35: 678–686. doi: 10.1007/s00134-008-1337-8 18946659

27. MacConmara MP, Maung AA, Fujimi S, McKenna AM, Delisle A, Lapchak PH, et al. Increased CD4+ CD25+ T Regulatory Cell Activity in Trauma Patients Depresses Protective Th1 Immunity. Trans. Meet Am Surg Assoc. 2006;124: 179–188. doi: 10.1097/01.sla.0000239031.06906.1f 16998360

28. Gentile LF, Nacionales DC, Cuenca AG, Armbruster M, Ungaro RF, Abouhamze AS, et al. Identification and description of a novel murine model for polytrauma and shock. Crit Care Med. 2013;41: 1075–1085. doi: 10.1097/CCM.0b013e318275d1f9 23399937

29. Dai H, Sun T, Liu Z, Zhang J, Zhou M. The imbalance between regulatory and IL-17-secreting CD4+T cells in multiple-trauma rat. Injury. 2013;44: 1521–1527. doi: 10.1016/j.injury.2013.03.015 23618785

30. Choileain NN, MacConmara M, Zang Y, Murphy TJ, Mannick JA, Lederer JA. Enhanced Regulatory T Cell Activity Is an Element of the Host Response to Injury. J Immunol. 2006;176: 225–236. doi: 10.4049/jimmunol.176.1.225 16365414

31. Kong LB, Lekawa M, Navarro RA, McGrath J, Cohen M, Margulies DR, et al. Pedestrian-motor vehicle trauma: an analysis of injury profiles by age. J Am Coll Surg. 1996;182: 17–23. 8542084

32. Pfeifer R, Teuben M, Andruszkow H, Barkatali BM, Pape H-C. Mortality Patterns in Patients with Multiple Trauma: A Systematic Review of Autopsy Studies. PLoS One. 2016;11: e0148844. doi: 10.1371/journal.pone.0148844 26871937

33. Gentile LF, Nacionales DC, Lopez MC, Vanzant E, Cuenca A, Cuenca AG, et al. A better understanding of why murine models of trauma do not recapitulate the human syndrome. Crit Care Med. 2014;42: 1406–1413. doi: 10.1097/CCM.0000000000000222 24413577

34. Li P, Tompkins RG, Xiao W. KERIS: kaleidoscope of gene responses to inflammation between species. Nucleic Acids Res. 2017;45: D908–D914. doi: 10.1093/nar/gkw974 27789704

35. Mestas J, Hughes CCW. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172: 2731–8. doi: 10.4049/jimmunol.172.5.2731 14978070

36. Osuchowski MF, Remick DG, Lederer JA, Lang CH, Aasen AO, Aibiki M, et al. Abandon the Mouse Research Ship? Not Just Yet! Shock. 2014;41: 463–475. doi: 10.1097/SHK.0000000000000153 24569509

37. Doeing DC, Borowicz JL, Crockett ET. Gender dimorphism in differential peripheral blood leukocyte counts in mice using cardiac, tail, foot, and saphenous vein puncture methods. BMC Clin Pathol. 2003;3: 1–6. doi: 10.1186/1472-6890-3-1

38. Barnaba V, Watts C, de Boer M, Lane P, Lanzavecchia A. Professional presentation of antigen by activated human T cells. Eur J Immunol. 1994;24: 71–75. doi: 10.1002/eji.1830240112 7517364

39. Denton MD, Geehan CS, Alexander SI, Sayegh MH, Briscoe DM. Endothelial Cells Modify the Costimulatory Capacity of Transmigrating Leukocytes and Promote Cd28-Mediated Cd4 + T Cell Alloactivation. J Exp Med. 1999;190: 555–566. doi: 10.1084/jem.190.4.555 10449526

40. Crocker PR. Species heterogeneity in macrophage expression of the CD4 antigen. J Exp Med. 1987;166: 613–618. doi: 10.1084/jem.166.2.613 3110358

41. Mira JC, Nacionales DC, Loftus TJ, Ungaro R, Mathias B, Mohr AM, et al. Mouse Injury Model of Polytrauma and Shock. 2018. pp. 1–15. doi: 10.1007/978-1-4939-7526-6_1 29468579

42. Martin MD, Danahy DB, Hartwig SM, Harty JT, Badovinac VP. Revealing the Complexity in CD8 T Cell Responses to Infection in Inbred C57B/6 versus Outbred Swiss Mice. Front Immunol. 2017;8. doi: 10.3389/fimmu.2017.01527 29213267

43. Chen X. BALB/c mice have more CD4+CD25+ T regulatory cells and show greater susceptibility to suppression of their CD4+CD25- responder T cells than C57BL/6 mice. J Leukoc Biol. 2005;78: 114–121. doi: 10.1189/jlb.0604341 15845645

44. Matsutani T, Anantha Samy TS, Kang SC, Bland KI, Chaudry IH. Mouse genetic background influences severity of immune responses following trauma-hemorrhage. Cytokine. 2005;30: 168–176. doi: 10.1016/j.cyto.2004.12.019 15863390

45. Rau CD, Parks B, Wang Y, Eskin E, Simecek P, Churchill GA, et al. High-Density Genotypes of Inbred Mouse Strains: Improved Power and Precision of Association Mapping. G3&#58; Genes|Genomes|Genetics. 2015;5: 2021–2026. doi: doi:10.1534/g3.115.020784

46. Charles River International (2011) CD-1 IGS Mice Nomenclature: Crl:CD1(ISG) [Internet]. 2011. Available: https://www.criver.com/sites/default/files/resources/CD-1IGSMouseModelInformationSheet.pdf


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden