Different levels of statistical learning - Hidden potentials of sequence learning tasks
Autoři:
Emese Szegedi-Hallgató aff001; Karolina Janacsek aff004; Dezso Nemeth aff004
Působiště autorů:
Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
aff001; Institute of Psychology, Faculty of Humanities, University of Szeged, Szeged, Hungary
aff002; Prevention of Mental Illnesses Interdisciplinary Research Group, University of Szeged, Szeged, Hungary
aff003; Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
aff004; Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
aff005; Lyon Neuroscience Research Center, Université de Lyon, Lyon, France
aff006
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0221966
Souhrn
In this paper, we reexamined the typical analysis methods of a visuomotor sequence learning task, namely the ASRT task (J. H. Howard & Howard, 1997). We pointed out that the current analysis of data could be improved by paying more attention to pre-existing biases (i.e. by eliminating artifacts by using new filters) and by introducing a new data grouping that is more in line with the task’s inherent statistical structure. These suggestions result in more types of learning scores that can be quantified and also in purer measures. Importantly, the filtering method proposed in this paper also results in higher individual variability, possibly indicating that it had been masked previously with the usual methods. The implications of our findings relate to other sequence learning tasks as well, and opens up opportunities to study different types of implicit learning phenomena.
Klíčová slova:
Biology and life sciences – Neuroscience – Cognitive science – Cognitive psychology – Learning – Human learning – Attention – Cognitive neuroscience – Reaction time – Learning and memory – Psychology – Social sciences – Research and analysis methods – Database and informatics methods – Bioinformatics – Sequence analysis – Research assessment – Research validity – Mathematical and statistical techniques – Statistical methods – Physical sciences – Mathematics – Statistics – Statistical data
Zdroje
1. Schacter DL. Implicit memory: History and current status. J Exp Psychol Learn Mem Cogn. 1987;13: 501–518. doi: 10.1037/0278-7393.13.3.501
2. Nissen MJ, Bullemer P. Attentional requirements of learning: Evidence from performance measures. Cognit Psychol. 1987;19: 1–32. doi: 10.1016/0010-0285(87)90002-8
3. Howard DV, Howard JH. Adult age differences in the rate of learning serial patterns: evidence from direct and indirect tests. Psychol Aging. 1992;7: 232–241. doi: 10.1037//0882-7974.7.2.232 1610513
4. Howard JH, Howard DV. Age differences in implicit learning of higher order dependencies in serial patterns. Psychol Aging. 1997;12: 634–656. 9416632
5. Stark-Inbar A, Raza M, Taylor JA, Ivry RB. Individual differences in implicit motor learning: task specificity in sensorimotor adaptation and sequence learning. J Neurophysiol. 2016;117: 412–428. doi: 10.1152/jn.01141.2015 27832611
6. Howard DV, Howard JH. When it does hurt to try: Adult age differences in the effects of instructions on implicit pattern learning. Psychon Bull Rev. 2001;8: 798–805. doi: 10.3758/BF03196220 11848602
7. Japikse KC, Negash S, Howard JH, Howard DV. Intermanual transfer of procedural learning after extended practice of probabilistic sequences. Exp Brain Res. 2003;148: 38–49. doi: 10.1007/s00221-002-1264-9 12478395
8. Negash S, Howard DV, Japikse KC, Howard JH. Age-Related Differences in Implicit Learning of Non-Spatial Sequential Patterns. Aging Neuropsychol Cogn. 2003;10: 108–121. doi: 10.1076/anec.10.2.108.14462
9. Barnes KA, Howard JH, Howard DV, Gilotty L, Kenworthy L, Gaillard WD, et al. Intact implicit learning of spatial context and temporal sequences in childhood autism spectrum disorder. Neuropsychology. 2008;22: 563. doi: 10.1037/0894-4105.22.5.563 18763876
10. Nemeth D, Hallgató E, Janacsek K, Sándor T, Londe Z. Perceptual and motor factors of implicit skill learning. NeuroReport. 2009;20: 1654. doi: 10.1097/WNR.0b013e328333ba08 19901856
11. Nemeth D, Janacsek K, Londe Z, Ullman MT, Howard DV, Howard JH. Sleep has no critical role in implicit motor sequence learning in young and old adults. Exp Brain Res. 2010;201: 351–358. doi: 10.1007/s00221-009-2024-x 19795111
12. Nemeth D, Janacsek K, Csifcsak G, Szvoboda G, Howard JH, Howard DV. Interference between Sentence Processing and Probabilistic Implicit Sequence Learning. PLOS ONE. 2011;6: e17577. doi: 10.1371/journal.pone.0017577 21408117
13. Janacsek K, Fiser J, Nemeth D. The best time to acquire new skills: age-related differences in implicit sequence learning across the human lifespan. Dev Sci. 2012;15: 496–505. doi: 10.1111/j.1467-7687.2012.01150.x 22709399
14. Hallgató E, Győri-Dani D, Pekár J, Janacsek K, Nemeth D. The differential consolidation of perceptual and motor learning in skill acquisition. Cortex. 2013;49: 1073–1081. doi: 10.1016/j.cortex.2012.01.002 22325422
15. Nemeth D, Janacsek K, Polner B, Kovacs ZA. Boosting Human Learning by Hypnosis. Cereb Cortex. 2013;23: 801–805. doi: 10.1093/cercor/bhs068 22459017
16. Schwartz BL, Howard DV, Howard JH, Hovaguimian A, Deutsch SI. Implicit learning of visuospatial sequences in schizophenia. Neuropsychology. 2003;17: 517. 12959517
17. Nemeth D, Janacsek K, Fiser J. Age-dependent and coordinated shift in performance between implicit and explicit skill learning. Front Comput Neurosci. 2013;7. doi: 10.3389/fncom.2013.00147 24155717
18. Kóbor A, Takács Á, Kardos Z, Janacsek K, Horváth K, Csépe V, et al. ERPs differentiate the sensitivity to statistical probabilities and the learning of sequential structures during procedural learning. Biol Psychol. 2018;135: 180–193. doi: 10.1016/j.biopsycho.2018.04.001 29634990
19. Simor P, Zavecz Z, Horváth K, Éltető N, Török C, Pesthy O, et al. Deconstructing Procedural Memory: Different Learning Trajectories and Consolidation of Sequence and Statistical Learning. Front Psychol. 2019;9. doi: 10.3389/fpsyg.2019.00009
20. Horvath K, Torok C, Pesthy O, Nemeth D, Janacsek K. Explicit instruction differentially affects subcomponents of procedural learning and consolidation. bioRxiv. 2018; 433243.
21. Howard DV, Howard JH, Japikse K, DiYanni C, Thompson A, Somberg R. Implicit sequence learning: effects of level of structure, adult age, and extended practice. Psychol Aging. 2004;19: 79–92. doi: 10.1037/0882-7974.19.1.79 15065933
22. Bennett IJ, Howard JH, Howard DV. Age-Related Differences in Implicit Learning of Subtle Third-Order Sequential Structure. J Gerontol Ser B. 2007;62: P98–P103. doi: 10.1093/geronb/62.2.P98 17379678
23. Marvel CL, Schwartz BL, Howard DV, Howard JH. Implicit learning of non-spatial sequences in schizophrenia. J Int Neuropsychol Soc. 2005;11: 659–667. doi: 10.1017/S1355617705050861 16248901
24. Howard JH, Howard DV, Japikse KC, Eden GF. Dyslexics are impaired on implicit higher-order sequence learning, but not on implicit spatial context learning. Neuropsychologia. 2006;44: 1131–1144. doi: 10.1016/j.neuropsychologia.2005.10.015 16313930
25. Negash S, Boeve BF, Geda YE, Smith GE, Knopman DS, Ivnik RJ, et al. Implicit Learning of Sequential Regularities and Spatial Contexts in Corticobasal Syndrome. Neurocase. 2007;13: 133–143. doi: 10.1080/13554790701401852 17786771
26. Barnes KA, Howard JH, Howard DV, Kenealy L, Vaidya CJ. Two forms of implicit learning in childhood ADHD. Dev Neuropsychol. 2010;35: 494–505. doi: 10.1080/87565641.2010.494750 20721771
27. Hedenius M, Persson J, Tremblay A, Adi-Japha E, Veríssimo J, Dye CD, et al. Grammar predicts procedural learning and consolidation deficits in children with Specific Language Impairment. Res Dev Disabil. 2011;32: 2362–2375. doi: 10.1016/j.ridd.2011.07.026 21840165
28. Bergstrom JCR, Howard JH, Howard DV. Enhanced Implicit Sequence Learning in College-age Video Game Players and Musicians. Appl Cogn Psychol. 2012;26: 91–96. doi: 10.1002/acp.1800
29. Nemeth D, Janacsek K, Király K, Londe Z, Németh K, Fazekas K, et al. Probabilistic sequence learning in mild cognitive impairment. Front Hum Neurosci. 2013;7: 318. doi: 10.3389/fnhum.2013.00318 23847493
30. Janacsek K, Ambrus GG, Paulus W, Antal A, Nemeth D. Right hemisphere advantage in statistical learning: evidence from a probabilistic sequence learning task. Brain Stimulat. 2015;8: 277–282. doi: 10.1016/j.brs.2014.11.008 25499036
31. Janacsek K, Borbély-Ipkovich E, Nemeth D, Gonda X. How can the depressed mind extract and remember predictive relationships of the environment? Evidence from implicit probabilistic sequence learning. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81: 17–24. doi: 10.1016/j.pnpbp.2017.09.021 28958916
32. Takács Á, Kóbor A, Chezan J, Éltető N, Tárnok Z, Nemeth D, et al. Is procedural memory enhanced in Tourette syndrome? Evidence from a sequence learning task. Cortex. 2018;100: 84–94. doi: 10.1016/j.cortex.2017.08.037 28964503
33. Howard JH, Howard DV, Dennis NA, Kelly AJ. Implicit learning of predictive relationships in three-element visual sequences by young and old adults. J Exp Psychol Learn Mem Cogn. 2008;34: 1139–1157. doi: 10.1037/a0012797 18763897
34. Song S, Howard JH, Howard DV. Sleep does not benefit probabilistic motor sequence learning. J Neurosci Off J Soc Neurosci. 2007;27: 12475–12483. doi: 10.1523/JNEUROSCI.2062-07.2007 18003825
35. Török B, Janacsek K, Nagy DG, Orbán G, Nemeth D. Measuring and filtering reactive inhibition is essential for assessing serial decision making and learning. J Exp Psychol Gen. 2017;146: 529–542. doi: 10.1037/xge0000288 28383991
36. E. Hick W. On the rate of information gain. Q J Exp Psychol. 1952;4: 11–26. doi: 10.1080/17470215208416600
37. Grosjean M, Rosenbaum DA, Elsinger C. Timing and reaction time. J Exp Psychol Gen. 2001;130: 256–272. 11409103
38. Woods DL, Wyma JM, Yund EW, Herron TJ, Reed B. Factors influencing the latency of simple reaction time. Front Hum Neurosci. 2015;9. doi: 10.3389/fnhum.2015.00131 25859198
39. Remington RJ. Analysis of sequential effects on choice reaction times. J Exp Psychol. 1969;82: 250–257. doi: 10.1037/h0028122 5378044
40. Kornblum S. Sequential effects in choice reaction time: A tutorial review. Atten Perform IV. 1973; 259–288.
41. Kirby NH. Sequential effects in two-choice reaction time: Automatic facilitation or subjective expectancy? J Exp Psychol Hum Percept Perform. 1976;2: 567. doi: 10.1037//0096-1523.2.4.567 1011006
42. Soetens E, Boer LC, Hueting JE. Expectancy or automatic facilitation? Separating sequential effects in two-choice reaction time. J Exp Psychol Hum Percept Perform. 1985;11: 598.
43. Vervaeck KR, Boer LC. Sequential effects in two-choice reaction time: Subjective expectancy and automatic after-effect at short response-stimulus intervals. Acta Psychol (Amst). 1980;44: 175–190.
44. Lee JC, Beesley T, Livesey EJ. Sequential effects and sequence learning in a three-choice serial reaction time task. Acta Psychol (Amst). 2016;170: 168–176. doi: 10.1016/j.actpsy.2016.08.004 27518835
45. Gao J, Wong-Lin K, Holmes P, Simen P, Cohen JD. Sequential effects in two-choice reaction time tasks: Decomposition and synthesis of mechanisms. Neural Comput. 2009;21: 2407–2436. doi: 10.1162/neco.2009.09-08-866 19548803
46. Song S, Howard JH, Howard DV. Implicit probabilistic sequence learning is independent of explicit awareness. Learn Mem. 2007;14: 167–176. doi: 10.1101/lm.437407 17351140
47. Schneider W, Eschman A, Zuccolotto A. E-Prime 2.0 reference guide manual. Pittsburgh PA Psychol Softw Tools. 2012;
48. Lebel EP, Paunonen SV. Sexy but often unreliable: the impact of unreliability on the replicability of experimental findings with implicit measures. Pers Soc Psychol Bull. 2011;37: 570–583. doi: 10.1177/0146167211400619 21441219
49. Edwards JR. Ten Difference Score Myths. Organ Res Methods. 2001;4: 265–287. doi: 10.1177/109442810143005
50. Kaufman SB, Deyoung CG, Gray JR, Jiménez L, Brown J, Mackintosh N. Implicit learning as an ability. Cognition. 2010;116: 321–340. doi: 10.1016/j.cognition.2010.05.011 20573341
51. Perruchet P, Pacton S. Implicit learning and statistical learning: one phenomenon, two approaches. Trends Cogn Sci. 2006;10: 233–238. doi: 10.1016/j.tics.2006.03.006 16616590
52. Parshina O, Obeid R, Che ES, Ricker TJ, Brooks PJ. SRT and ASRT: Similar Tasks Tapping Distinct Learning Mechanisms? 40th Annu Meet Cogn Sci Soc CogSci 2018. 2018; Madison, Wisconsin (USA), July 25–28. 2018.
53. Destrebecqz A, Cleeremans A. Can sequence learning be implicit? New evidence with the process dissociation procedure. Psychon Bull Rev. 2001;8: 343–350. 11495124
54. Song S, Howard JH, Howard DV. Perceptual sequence learning in a serial reaction time task. Exp Brain Res Exp Hirnforsch Exp Cerebrale. 2008;189: 145–158. doi: 10.1007/s00221-008-1411-z 18478209
55. Walker CM, Walker MF, Sunderland A. Dressing after a Stroke: A Survey of Current Occupational Therapy Practice. Br J Occup Ther. 2003;66: 263–268. doi: 10.1177/030802260306600605
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Tisícileté topoly, mokří psi, stárnoucí kočky a ospalé octomilky – „jednohubky“ z výzkumu 2024/41
- Jaké jsou aktuální trendy v léčbě karcinomu slinivky?
- Menstruační krev má značný diagnostický potenciál, mimo jiné u diabetu
- Proč jsou nemocnice nepřítelem spánku? A jak to změnit?
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?