Clinical factors associated with bacterial translocation in Japanese patients with type 2 diabetes: A retrospective study
Autoři:
Shoko Tamaki aff001; Akio Kanazawa aff001; Junko Sato aff001; Yoshifumi Tamura aff001; Takashi Asahara aff003; Takuya Takahashi aff003; Satoshi Matsumoto aff003; Yuichiro Yamashiro aff003; Hirotaka Watada aff001
Působiště autorů:
Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
aff001; Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
aff002; Probiotics Research Laboratory, Juntendo University Graduate School of Medicine, Tokyo, Japan
aff003; Yakult Central Institute, Tokyo, Japan
aff004; Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
aff005; Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
aff006
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222598
Souhrn
Objective
To explore clinical factors associated with bacterial translocation in Japanese patients with type 2 diabetes mellitus (T2DM).
Methods
The data of 118 patients with T2DM were obtained from two previous clinical studies, and were retrospectively analyzed regarding the clinical parameters associated with bacterial translocation defined as detection of bacteremia and levels of plasma lipopolysaccharide binding protein (LBP), the latter of which is thought to reflect inflammation caused by endotoxemia.
Results
LBP level was not significantly different between patients with and without bacteremia. No clinical factors were significantly correlated with the detection of bacteremia. On the other hand, plasma LBP level was significantly correlated with HbA1c (r = 0.312), fasting blood glucose (r = 0.279), fasting C-peptide (r = 0.265), body mass index (r = 0.371), high-density lipoprotein cholesterol (r = -0.241), and inflammatory markers (high-sensitivity C-reactive protein, r = 0.543; and interleukin-6, r = 0.456). Multiple regression analysis identified body mass index, HbA1c, high-sensitivity C-reactive protein, and interleukin-6 as independent determinants of plasma LBP level.
Conclusion
The plasma LBP level was similar in patients with and without bacteremia. While both bacteremia and LBP are theoretically associated with bacterial translocation, the detection of bacteremia was not associated with LBP level in T2DM.
Klíčová slova:
Biology and life sciences – Anatomy – Body fluids – Blood – Blood plasma – Physiology – Biochemistry – Proteins – Hemoglobin – Medicine and health sciences – Blood sugar – Infectious diseases – Bacterial diseases – Bacteremia – Immunology – Immune response – Inflammation – Diagnostic medicine – Signs and symptoms – Diabetes diagnosis and management – HbA1c – Pathology and laboratory medicine – Endocrinology – Endocrine disorders – Metabolic disorders – Research and analysis methods – Mathematical and statistical techniques – Statistical methods – Regression analysis – Physical sciences – Mathematics – Statistics
Zdroje
1. Balzan S, de Almeida Quadros C, de Cleva R, Zilberstein B, Cecconello I. Bacterial translocation: overview of mechanisms and clinical impact. Journal of gastroenterology and hepatology. 2007;22(4):464–71. Epub 2007/03/23. doi: 10.1111/j.1440-1746.2007.04933.x 17376034.
2. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56(7):1761–72. Epub 2007/04/26. doi: 10.2337/db06-1491 17456850.
3. Amar J, Serino M, Lange C, Chabo C, Iacovoni J, Mondot S, et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia. 2011;54(12):3055–61. Epub 2011/10/07. doi: 10.1007/s00125-011-2329-8 21976140.
4. Mehta NN, McGillicuddy FC, Anderson PD, Hinkle CC, Shah R, Pruscino L, et al. Experimental endotoxemia induces adipose inflammation and insulin resistance in humans. Diabetes. 2010;59(1):172–81. Epub 2009/10/02. doi: 10.2337/db09-0367 19794059.
5. Novitsky TJ. Limitations of the Limulus amebocyte lysate test in demonstrating circulating lipopolysaccharides. Annals of the New York Academy of Sciences. 1998;851:416–21. Epub 1998/07/21. doi: 10.1111/j.1749-6632.1998.tb09018.x 9668634.
6. Tobias PS, Soldau K, Ulevitch RJ. Isolation of a lipopolysaccharide-binding acute phase reactant from rabbit serum. The Journal of experimental medicine. 1986;164(3):777–93. Epub 1986/09/01. doi: 10.1084/jem.164.3.777 2427635.
7. Miura K, Ishioka M, Minami S, Horie Y, Ohshima S, Goto T, et al. Toll-like Receptor 4 on Macrophage Promotes the Development of Steatohepatitis-related Hepatocellular Carcinoma in Mice. The Journal of biological chemistry. 2016;291(22):11504–17. Epub 2016/03/30. doi: 10.1074/jbc.M115.709048 27022031.
8. Ge Q, Gerard J, Noel L, Scroyen I, Brichard SM. MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology. 2012;153(11):5285–96. Epub 2012/09/28. doi: 10.1210/en.2012-1623 23015294.
9. Sato J, Kanazawa A, Ikeda F, Yoshihara T, Goto H, Abe H, et al. Gut dysbiosis and detection of "live gut bacteria" in blood of Japanese patients with type 2 diabetes. Diabetes care. 2014;37(8):2343–50. Epub 2014/05/16. doi: 10.2337/dc13-2817 24824547.
10. Sato J, Kanazawa A, Azuma K, Ikeda F, Goto H, Komiya K, et al. Probiotic reduces bacterial translocation in type 2 diabetes mellitus: A randomised controlled study. Scientific reports. 2017;7(1):12115. Epub 2017/09/25. doi: 10.1038/s41598-017-12535-9 28935921.
11. Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermudez-Humaran LG, et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO molecular medicine. 2011;3(9):559–72. Epub 2011/07/08. doi: 10.1002/emmm.201100159 21735552.
12. Moreno-Navarrete JM, Escote X, Ortega F, Camps M, Ricart W, Zorzano A, et al. Lipopolysaccharide binding protein is an adipokine involved in the resilience of the mouse adipocyte to inflammation. Diabetologia. 2015;58(10):2424–34. Epub 2015/07/24. doi: 10.1007/s00125-015-3692-7 26201685.
13. Sucajtys-Szulc E, Debska-Slizien A, Rutkowski B, Milczarek R, Pelikant-Malecka I, Sledzinski T, et al. Hepatocyte nuclear factors as possible C-reactive protein transcriptional inducer in the liver and white adipose tissue of rats with experimental chronic renal failure. Molecular and cellular biochemistry. 2018. Epub 2018/01/14. doi: 10.1007/s11010-018-3268-1 29330688.
14. Schumann RR, Kirschning CJ, Unbehaun A, Aberle HP, Knope HP, Lamping N, et al. The lipopolysaccharide-binding protein is a secretory class 1 acute-phase protein whose gene is transcriptionally activated by APRF/STAT/3 and other cytokine-inducible nuclear proteins. Molecular and cellular biology. 1996;16(7):3490–503. Epub 1996/07/01. doi: 10.1128/mcb.16.7.3490 8668165;
15. Moreno-Navarrete JM, Ortega F, Serino M, Luche E, Waget A, Pardo G, et al. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. International journal of obesity (2005). 2012;36(11):1442–9. Epub 2011/12/21. doi: 10.1038/ijo.2011.256 22184060.
16. Yokoyama Y, Miyake T, Kokuryo T, Asahara T, Nomoto K, Nagino M. Effect of Perioperative Synbiotic Treatment on Bacterial Translocation and Postoperative Infectious Complications after Pancreatoduodenectomy. Digestive surgery. 2016;33(3):220–9. Epub 2016/03/19. doi: 10.1159/000444459 26990315.
17. Peraneva L, Fogarty CL, Pussinen PJ, Forsblom C, Groop PH, Lehto M. Systemic exposure to Pseudomonal bacteria: a potential link between type 1 diabetes and chronic inflammation. Acta diabetologica. 2013;50(3):351–61. Epub 2012/08/07. doi: 10.1007/s00592-012-0421-2 22864910.
18. Lecube A, Pachon G, Petriz J, Hernandez C, Simo R. Phagocytic activity is impaired in type 2 diabetes mellitus and increases after metabolic improvement. PloS one. 2011;6(8):e23366. Epub 2011/08/31. doi: 10.1371/journal.pone.0023366 21876749.
19. Yamashiro K, Tanaka R, Urabe T, Ueno Y, Yamashiro Y, Nomoto K, et al. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PloS one. 2017;12(2):e0171521. Epub 2017/02/07. doi: 10.1371/journal.pone.0171521 28166278.
20. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–71. Epub 2011/12/23. doi: 10.2337/db11-1019 22190648.
21. Christiansen CB, Gabe MBN, Svendsen B, Dragsted LO, Rosenkilde MM, Holst JJ. The impact of short chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon. American journal of physiology Gastrointestinal and liver physiology. 2018. Epub 2018/03/02. doi: 10.1152/ajpgi.00346.2017 29494208.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- I mozek má svou krizi středního věku. Jak tyto změny souvisejí s rizikem demence ve stáří?
- Přerušovaný půst může mít významná zdravotní rizika
- Jak nám pocit vděčnosti pomáhá snáze se rozloučit se životem
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?