Rapid evolution of Mexican H7N3 highly pathogenic avian influenza viruses in poultry
Autoři:
Sungsu Youk aff001; Dong-Hun Lee aff002; Helena L. Ferreira aff001; Claudio L. Afonso aff001; Angel E. Absalon aff004; David E. Swayne aff001; David L. Suarez aff001; Mary J. Pantin-Jackwood aff001
Působiště autorů:
Exotic and Emerging Avian Viral Diseases Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, United States of America
aff001; Department of Pathobiology & Veterinary Science, University of Connecticut, Storrs, Mansfield, Connecticut, United States of America
aff002; University of Sao Paulo, ZMV- FZEA, Pirassununga, Brazil
aff003; Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Tlaxcala, México
aff004
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222457
Souhrn
Highly pathogenic avian influenza (HPAI) virus subtype H7N3 has been circulating in poultry in Mexico since 2012 and vaccination has been used to control the disease. In this study, eight Mexican H7N3 HPAI viruses from 2015–2017 were isolated and fully sequenced. No evidence of reassortment was detected with other avian influenza (AI) viruses, but phylogenetic analyses show divergence of all eight gene segments into three genetic clusters by 2015, with 94.94 to 98.78 percent nucleotide homology of the HA genes when compared to the index virus from 2012. The HA protein of viruses from each cluster showed a different number of basic amino acids (n = 5–7) in the cleavage site, and six different patterns at the predicted N-glycosylation sites. Comparison of the sequences of the Mexican lineage H7N3 HPAI viruses and American ancestral wild bird AI viruses to characterize the virus evolutionary dynamics showed that the nucleotide substitution rates in PB2, PB1, PA, HA, NP, and NS genes greatly increased once the virus was introduced into poultry. The global nonsynonymous and synonymous ratios imply strong purifying selection driving the evolution of the virus. Forty-nine positively selected sites out of 171 nonsynonymous mutations were identified in the Mexican H7N3 HPAI viruses, including 7 amino acid changes observed in higher proportion in North American poultry origin AI viruses isolates than in wild bird-origin viruses. Continuous monitoring and molecular characterization of the H7N3 HPAI virus is important for better understanding of the virus evolutionary dynamics and further improving control measures including vaccination.
Klíčová slova:
People and places – Population groupings – Ethnicities – Latin American people – Mexican people – Biology and life sciences – Organisms – Eukaryota – Animals – Vertebrates – Amniotes – Birds – Poultry – Evolutionary biology – Evolutionary systematics – Phylogenetics – Phylogenetic analysis – Evolutionary processes – Evolutionary rate – Organismal evolution – Microbial evolution – Viral evolution – Taxonomy – Genetics – Animal genetics – Bird genetics – Microbiology – Virology – Biochemistry – Glycobiology – Glycosylation – Proteins – Post-translational modification – Computer and information sciences – Data management – Research and analysis methods – Database and informatics methods – Bioinformatics – Sequence analysis
Zdroje
1. Swayne DE. Animal influenza. Second edition. ed. Ames, Iowa: John Wiley and Sons, Inc.; 2017. xvi, p. 634.
2. International Office of Epizootics. Biological Standards Commission. Manual of diagnostic tests and vaccines for terrestrial animals: mammals, birds and bees. 5th ed. Paris: Office international des épizooties; 2004.
3. Influenza A cleavage sites [Internet]. 2018 [cited 13 Febuary 2019]. Available from: http://www.offlu.net/fileadmin/home/en/resource-centre/pdf/Influenza_A_Cleavage_Sites.pdf.
4. Stech J, Xiong X, Scholtissek C, Webster RG. Independence of evolutionary and mutational rates after transmission of avian influenza viruses to swine. J Virol. 1999;73(3):1878–84. 9971766.
5. Parvin JD, Moscona A, Pan WT, Leider JM, Palese P. Measurement of the mutation rates of animal viruses: influenza A virus and poliovirus type 1. J Virol. 1986;59(2):377–83. Epub 1986/08/01. 3016304; PubMed Central PMCID: PMC253087.
6. Rojas H, Moreira R, Avalos P, Capua I, Marangon S. Avian influenza in poultry in Chile. Vet Rec. 2002;151(6):188. 12201269.
7. Hirst M, Astell CR, Griffith M, Coughlin SM, Moksa M, Zeng T, et al. Novel avian influenza H7N3 strain outbreak, British Columbia. Emerg Infect Dis. 2004;10(12):2192–5. doi: 10.3201/eid1012.040743 15663859.
8. Berhane Y, Hisanaga T, Kehler H, Neufeld J, Manning L, Argue C, et al. Highly pathogenic avian influenza virus A (H7N3) in domestic poultry, Saskatchewan, Canada, 2007. Emerg Infect Dis. 2009;15(9):1492–5. Epub 2009/10/01. doi: 10.3201/eid1509.080231 19788823; PubMed Central PMCID: PMC2819867.
9. Maurer-Stroh S, Lee RT, Gunalan V, Eisenhaber F. The highly pathogenic H7N3 avian influenza strain from July 2012 in Mexico acquired an extended cleavage site through recombination with host 28S rRNA. Virol J. 2013;10:139. Epub 2013/05/03. doi: 10.1186/1743-422X-10-139 23635025; PubMed Central PMCID: PMC3673898.
10. Kapczynski DR, Pantin-Jackwood M, Guzman SG, Ricardez Y, Spackman E, Bertran K, et al. Characterization of the 2012 highly pathogenic avian influenza H7N3 virus isolated from poultry in an outbreak in Mexico: pathobiology and vaccine protection. J Virol. 2013;87(16):9086–96. Epub 2013/06/14. doi: 10.1128/JVI.00666-13 23760232; PubMed Central PMCID: PMC3754080.
11. Krauss S, Stucker KM, Schobel SA, Danner A, Friedman K, Knowles JP, et al. Long-term surveillance of H7 influenza viruses in American wild aquatic birds: are the H7N3 influenza viruses in wild birds the precursors of highly pathogenic strains in domestic poultry? Emerg Microbes Infect. 2015;4:e35. Epub 2015/01/01. doi: 10.1038/emi.2015.35 26954883; PubMed Central PMCID: PMC4773044.
12. Lu L, Lycett SJ, Leigh Brown AJ. Determining the phylogenetic and phylogeographic origin of highly pathogenic avian influenza (H7N3) in Mexico. PLoS One. 2014;9(9):e107330. Epub 2014/09/17. doi: 10.1371/journal.pone.0107330 25226523; PubMed Central PMCID: PMC4165766.
13. Lopez-Martinez I, Balish A, Barrera-Badillo G, Jones J, Nunez-Garcia TE, Jang Y, et al. Highly pathogenic avian influenza A(H7N3) virus in poultry workers, Mexico, 2012. Emerg Infect Dis. 2013;19(9):1531–4. doi: 10.3201/eid1909.130087 23965808; PubMed Central PMCID: PMC3810917.
14. Lourdes MG. Highly pathogenic avian influenza, Mexico. Follow-up report No. 8. World Animal Health Information Database (WAHID) interface for high pathogenic avian influenza: World Organisation for Animal Health (OIE), 2017.
15. Youk SS, Lee DH, Leyson CM, Smith D, Criado MF, DeJesus E, et al. Loss of fitness in mallards of Mexican H7N3 highly pathogenic avian influenza virus after circulating in chickens. J Virol. 2019. Epub 2019/05/10. doi: 10.1128/JVI.00543-19 31068421.
16. Criado MF, Bertran K, Lee DH, Killmaster L, Stephens CB, Spackman E, et al. Efficacy of novel recombinant fowlpox vaccine against recent Mexican H7N3 highly pathogenic avian influenza virus. Vaccine. 2019;37(16):2232–43. Epub 2019/03/20. doi: 10.1016/j.vaccine.2019.03.009 30885512.
17. He Y, Taylor TL, Dimitrov KM, Butt SL, Stanton JB, Goraichuk IV, et al. Whole-genome sequencing of genotype VI Newcastle disease viruses from formalin-fixed paraffin-embedded tissues from wild pigeons reveals continuous evolution and previously unrecognized genetic diversity in the U.S. Virol J. 2018;15(1):9. Epub 2018/01/14. doi: 10.1186/s12985-017-0914-2 29329546; PubMed Central PMCID: PMC5767055.
18. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9. Epub 2012/05/01. doi: 10.1093/bioinformatics/bts199 22543367; PubMed Central PMCID: PMC3371832.
19. Dimitrov KM, Sharma P, Volkening JD, Goraichuk IV, Wajid A, Rehmani SF, et al. A robust and cost-effective approach to sequence and analyze complete genomes of small RNA viruses. Virol J. 2017;14(1):72. Epub 2017/04/09. doi: 10.1186/s12985-017-0741-5 28388925; PubMed Central PMCID: PMC5384157.
20. Zhang Y, Aevermann BD, Anderson TK, Burke DF, Dauphin G, Gu Z, et al. Influenza Research Database: An integrated bioinformatics resource for influenza virus research. Nucleic Acids Res. 2017;45(D1):D466–D74. Epub 2016/09/30. doi: 10.1093/nar/gkw857 27679478; PubMed Central PMCID: PMC5210613.
21. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. Epub 2014/01/24. doi: 10.1093/bioinformatics/btu033 24451623; PubMed Central PMCID: PMC3998144.
22. Rambaut A, Lam TT, Max Carvalho L, Pybus OG. Exploring the temporal structure of heterochronous sequences using TempEst (formerly Path-O-Gen). Virus Evol. 2016;2(1):vew007. Epub 2016/10/25. doi: 10.1093/ve/vew007 27774300; PubMed Central PMCID: PMC4989882.
23. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):772. Epub 2012/08/01. doi: 10.1038/nmeth.2109 22847109; PubMed Central PMCID: PMC4594756.
24. Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29(8):1969–73. Epub 2012/03/01. doi: 10.1093/molbev/mss075 22367748; PubMed Central PMCID: PMC3408070.
25. Minin VN, Bloomquist EW, Suchard MA. Smooth skyride through a rough skyline: Bayesian coalescent-based inference of population dynamics. Mol Biol Evol. 2008;25(7):1459–71. Epub 2008/04/15. doi: 10.1093/molbev/msn090 18408232; PubMed Central PMCID: PMC3302198.
26. Drummond AJ, Suchard MA. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 2010;8:114. Epub 2010/09/03. doi: 10.1186/1741-7007-8-114 20807414; PubMed Central PMCID: PMC2949620.
27. Gentleman R. R: A Language for Data Analysis and Graphics AU—Ihaka, Ross. Journal of Computational and Graphical Statistics. 1996;5(3):299–314. doi: 10.1080/10618600.1996.10474713.
28. O'Brien JD, Minin VN, Suchard MA. Learning to count: robust estimates for labeled distances between molecular sequences. Mol Biol Evol. 2009;26(4):801–14. Epub 2009/01/10. doi: 10.1093/molbev/msp003 19131426; PubMed Central PMCID: PMC2734148.
29. Lemey P, Minin VN, Bielejec F, Kosakovsky Pond SL, Suchard MA. A counting renaissance: combining stochastic mapping and empirical Bayes to quickly detect amino acid sites under positive selection. Bioinformatics. 2012;28(24):3248–56. Epub 2012/10/16. doi: 10.1093/bioinformatics/bts580 23064000; PubMed Central PMCID: PMC3579240.
30. Gupta R, Jung E, Brunak S. Prediction of N-glycosylation sites in human proteins. 2004.
31. Lu L, Lycett SJ, Leigh Brown AJ. Determining the phylogenetic and phylogeographic origin of highly pathogenic avian influenza (H7N3) in Mexico. PLoS One. 2014;9(9):e107330. Epub 2014/09/17. doi: 10.1371/journal.pone.0107330 25226523; PubMed Central PMCID: PMC4165766.
32. Chen R, Holmes EC. Avian influenza virus exhibits rapid evolutionary dynamics. Mol Biol Evol. 2006;23(12):2336–41. Epub 2006/09/02. doi: 10.1093/molbev/msl102 16945980.
33. Escorcia M, Carrillo-Sanchez K, March-Mifsut S, Chapa J, Lucio E, Nava GM. Impact of antigenic and genetic drift on the serologic surveillance of H5N2 avian influenza viruses. BMC Vet Res. 2010;6:57. Epub 2010/12/22. doi: 10.1186/1746-6148-6-57 21172021; PubMed Central PMCID: PMC3023700.
34. Álvarez MJBD. Highly pathogenic avian influenza, Mexico. First occurrence immediate notification. World Animal Health Information Database (WAHID) interface for high pathogenic avian influenza: World Organisation for Animal Health (OIE), 2015.
35. Miyata T, Miyazawa S, Yasunaga T. Two types of amino acid substitutions in protein evolution. J Mol Evol. 1979;12(3):219–36. Epub 1979/03/15. doi: 10.1007/bf01732340 439147.
36. Zhang J. Rates of conservative and radical nonsynonymous nucleotide substitutions in mammalian nuclear genes. J Mol Evol. 2000;50(1):56–68. Epub 2000/02/02. doi: 10.1007/s002399910007 10654260.
37. Naeem K, Siddique N. Use of strategic vaccination for the control of avian influenza in Pakistan. Dev Biol (Basel). 2006;124:145–50. Epub 2006/02/02. 16447505.
38. Aamir UB, Naeem K, Ahmed Z, Obert CA, Franks J, Krauss S, et al. Zoonotic potential of highly pathogenic avian H7N3 influenza viruses from Pakistan. Virology. 2009;390(2):212–20. Epub 2009/06/19. doi: 10.1016/j.virol.2009.05.008 19535120; PubMed Central PMCID: PMC2710411.
39. Abbas MA, Spackman E, Fouchier R, Smith D, Ahmed Z, Siddique N, et al. H7 avian influenza virus vaccines protect chickens against challenge with antigenically diverse isolates. Vaccine. 2011;29(43):7424–9. Epub 2011/08/02. doi: 10.1016/j.vaccine.2011.07.064 21803098.
40. Monne I, Fusaro A, Nelson MI, Bonfanti L, Mulatti P, Hughes J, et al. Emergence of a highly pathogenic avian influenza virus from a low-pathogenic progenitor. J Virol. 2014;88(8):4375–88. Epub 2014/02/07. doi: 10.1128/JVI.03181-13 24501401; PubMed Central PMCID: PMC3993777.
41. Sartore S, Bonfanti L, Lorenzetto M, Cecchinato M, Marangon S. The effects of control measures on the economic burden associated with epidemics of avian influenza in Italy. Poult Sci. 2010;89(6):1115–21. Epub 2010/05/13. doi: 10.3382/ps.2009-00556 20460656.
42. Hanada K, Suzuki Y, Gojobori T. A large variation in the rates of synonymous substitution for RNA viruses and its relationship to a diversity of viral infection and transmission modes. Mol Biol Evol. 2004;21(6):1074–80. Epub 2004/03/12. doi: 10.1093/molbev/msh109 15014142.
43. Hernandez G, Parrish RM, McLeod L. Global Agricultural Information Network. USDA: USDA Foreign Agricultural Service, 2017.
44. Vandegrift KJ, Sokolow SH, Daszak P, Kilpatrick AM. Ecology of avian influenza viruses in a changing world. Ann N Y Acad Sci. 2010;1195:113–28. Epub 2010/06/12. doi: 10.1111/j.1749-6632.2010.05451.x 20536820; PubMed Central PMCID: PMC2981064.
45. Capua I, Marangon S. Control and prevention of avian influenza in an evolving scenario. Vaccine. 2007;25(30):5645–52. Epub 2006/12/16. S0264-410X(06)01191-1 [pii] doi: 10.1016/j.vaccine.2006.10.053 17169466.
46. Lebarbenchon C, Stallknecht DE. Host shifts and molecular evolution of H7 avian influenza virus hemagglutinin. Virol J. 2011;8:328. Epub 2011/06/30. doi: 10.1186/1743-422X-8-328 21711553; PubMed Central PMCID: PMC3141685.
47. Mair CM, Ludwig K, Herrmann A, Sieben C. Receptor binding and pH stability—how influenza A virus hemagglutinin affects host-specific virus infection. Biochim Biophys Acta. 2014;1838(4):1153–68. Epub 2013/10/29. doi: 10.1016/j.bbamem.2013.10.004 24161712.
48. Cattoli G, Fusaro A, Monne I, Coven F, Joannis T, El-Hamid HS, et al. Evidence for differing evolutionary dynamics of A/H5N1 viruses among countries applying or not applying avian influenza vaccination in poultry. Vaccine. 2011;29(50):9368–75. Epub 2011/10/18. doi: 10.1016/j.vaccine.2011.09.127 22001877.
49. Bataille A, van der Meer F, Stegeman A, Koch G. Evolutionary analysis of inter-farm transmission dynamics in a highly pathogenic avian influenza epidemic. PLoS Pathog. 2011;7(6):e1002094. Epub 2011/07/07. doi: 10.1371/journal.ppat.1002094 21731491; PubMed Central PMCID: PMC3121798.
50. Lee CW, Senne DA, Suarez DL. Effect of vaccine use in the evolution of Mexican lineage H5N2 avian influenza virus. J Virol. 2004;78(15):8372–81. doi: 10.1128/JVI.78.15.8372-8381.2004 15254209.
51. Cattoli G, Milani A, Temperton N, Zecchin B, Buratin A, Molesti E, et al. Antigenic drift in H5N1 avian influenza virus in poultry is driven by mutations in major antigenic sites of the hemagglutinin molecule analogous to those for human influenza virus. J Virol. 2011;85(17):8718–24. Epub 2011/07/08. doi: 10.1128/JVI.02403-10 21734057; PubMed Central PMCID: PMC3165837.
52. Philpott M, Hioe C, Sheerar M, Hinshaw VS. Hemagglutinin mutations related to attenuation and altered cell tropism of a virulent avian influenza A virus. J Virol. 1990;64(6):2941–7. Epub 1990/06/01. 2335822; PubMed Central PMCID: PMC249478.
53. Kaverin NV, Rudneva IA, Ilyushina NA, Varich NL, Lipatov AS, Smirnov YA, et al. Structure of antigenic sites on the haemagglutinin molecule of H5 avian influenza virus and phenotypic variation of escape mutants. J Gen Virol. 2002;83(Pt 10):2497–505. doi: 10.1099/0022-1317-83-10-2497 12237433.
54. Noronha JM, Liu M, Squires RB, Pickett BE, Hale BG, Air GM, et al. Influenza virus sequence feature variant type analysis: evidence of a role for NS1 in influenza virus host range restriction. J Virol. 2012;86(10):5857–66. Epub 2012/03/09. doi: 10.1128/JVI.06901-11 22398283; PubMed Central PMCID: PMC3347290.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Proč jsou nemocnice nepřítelem spánku? A jak to změnit?
- Dlouhodobá ketodieta může poškozovat naše orgány
- „Jednohubky“ z klinického výzkumu – 2024/42
- Není statin jako statin aneb praktický přehled rozdílů jednotlivých molekul
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?