NGS analysis in Marfan syndrome spectrum: Combination of rare and common genetic variants to improve genotype-phenotype correlation analysis


Autoři: Davide Gentilini aff001;  Antonino Oliveri aff001;  Teresa Fazia aff001;  Alessandro Pini aff004;  Susan Marelli aff004;  Luisa Bernardinelli aff001;  Anna Maria Di Blasio aff003
Působiště autorů: Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy aff001;  Istituto Auxologico Italiano IRCCS, Bioinformatics and Statistical Genomics Unit, Cusano Milanino, Milano, Italy aff002;  Istituto Auxologico Italiano IRCCS, Molecular Biology Laboratory, Cusano Milanino, Milano, Italy aff003;  Rare Disease Center, Marfan Clinic, Cardiology department, ASST-FBF-Sacco, Milano, Italy aff004;  Centro di Cardiogenetica Vascolare IRCCS Policlinico San Donato, San Donato Milanese, Milano, Italy aff005
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222506

Souhrn

The diagnosis of Marfan spectrum includes a large number of clinical criteria. Although the identification of pathogenic variants contributes to the diagnostic process, its value to the prediction of clinical outcomes is still limited. An important novelty of the present study is represented by the statistical approach adopted to investigate genotype-phenotype correlation. The analysis has been improved considering the extended genetic information obtained by Next Generation Sequencing (NGS) and combining the effects of both rare and common genetic variants in an inclusive model. To this aim a cohort of 181 patients were analyzed with a NGS panel including 11 genes associated with Marfan spectrum. The genotype-phenotype correlation was also investigated considering the possibility to predict presence of a pathological mutation in Marfan syndrome (MFS) main genes based only on the analysis of phenotypic traits. Results obtained indicate that information about clinical traits can be summarized in a new variable that resulted significantly associated with the probability to find a pathological mutation in MFS main genes. This is important since the choice of the genetic test is often influenced by the phenotypic characterization of patients. Moreover, both rare and common variants were found to significantly contribute to clinical spectrum and their combination allowed to increase the percentage of phenotype variability that could be explained based on genetic factors. Results highlight the opportunity to take advantage of the overall genetic information obtained by NGS data to have a better clinical classification of patients.

Klíčová slova:

Biology and life sciences – Genetics – Phenotypes – Population genetics – Human genetics – Heredity – Genetic mapping – Variant genotypes – Genomics – Genome analysis – Transcriptome analysis – Evolutionary biology – Genetic polymorphism – Population biology – Biochemistry – Proteins – Collagens – Molecular biology – Molecular biology techniques – Computational biology – Research and analysis methods – Sequencing techniques – DNA sequencing – Next-generation sequencing – Medicine and health sciences – Clinical genetics – Genetic diseases – Autosomal dominant diseases – Marfan syndrome – Rheumatology – Connective tissue diseases – Collagen diseases – Ehlers-Danlos syndrome


Zdroje

1. Pepe G, Giusti B, Evangelisti L, Porciani MC, Brunelli T, Giurlani L, et al. Fibrillin-1 (FBN1) gene frameshift mutations in Marfan patients: genotype-phenotype correlation. Clinical Genetics, 2001 59, 444–450 doi: 10.1034/j.1399-0004.2001.590610.x 11453977

2. Hennekam RCM. Severe infantile Marfan syndrome versus neonatal Marfan syndrome. Am J Med Genet A. 2005;139(1):1. doi: 10.1002/ajmg.a.30979 16222685

3. Dietz HC, Pyeritz RE. Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet. 1995;4 Spec No:1799–1809. http://www.ncbi.nlm.nih.gov/pubmed/8541880.

4. Groth KA, Stochholm K, Hove H, Andersen NH, Gravholt CH. Causes of Mortality in the Marfan Syndrome(from a Nationwide Register Study). Am J Cardiol. 2018;122(7):1231–1235. doi: 10.1016/j.amjcard.2018.06.034 30149886

5. Child AH. Non-cardiac manifestations of Marfan syndrome. Ann Cardiothorac Surg. 2017;6(6):599–609. doi: 10.21037/acs.2017.10.02 29270372

6. Barness LA. The metabolic and molecular bases of inherited disease. Am J Med Genet. 1996;3:4605. doi: 10.1002/(SICI)1096-8628(19961202)66:1%3C87::AID-AJMG20%3E3.0.CO;2-L

7. Dietz H. Marfan Syndrome.; 1993. http://www.ncbi.nlm.nih.gov/pubmed/20301510.

8. Rybczynski M, Bernhardt AM, Rehder U, Fuisting B, Meiss L, Voss U, et al. Am J Med Genet A. 2008;146A(24):3157–3166. doi: 10.1002/ajmg.a.32595 19012347

9. Meester J, Verstraeten A, Schepers D, Alaerts M, Van Laer L, Loeys BL. Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome. Ann Cardiothorac Surg. 2017;6(6):582–594. doi: 10.21037/acs.2017.11.03 29270370

10. Zhang L, Wang H-H. The genetics and pathogenesis of thoracic aortic aneurysm disorder and dissections. Clin Genet. 2016;89(6):639–646. doi: 10.1111/cge.12713 26662674

11. Chandra A, Charteris D. Molecular pathogenesis and management strategies of ectopia lentis. Eye. 2014;28(2):162–168. doi: 10.1038/eye.2013.274 24406422

12. Gao L-G, Luo F, Hui R-T, Zhou X-L. Recent molecular biological progress in Marfan syndrome and Marfan-associated disorders. Ageing Res Rev. 2010;9(3):363–368. doi: 10.1016/j.arr.2009.09.001 19772952

13. Rocha Cabrera P, Cordovés Dorta L, Serrano García MA, Losada Castillo MJ, Abreu Reyes JA, Gómez Resa M. Genetic variant of Stickler’s syndrome. Arch Soc Esp Oftalmol. 2018;93(3):139–142. doi: 10.1016/j.oftal.2017.07.003 28882395

14. Shah SY, Higgins A, Desai MY. Bicuspid aortic valve: Basics and beyond. Cleve Clin J Med. 2018;85(10):779–784. doi: 10.3949/ccjm.85a.17069 30289756

15. Verstraeten A, Alaerts M, Van Laer L, Loeys B. Marfan Syndrome and Related Disorders: 25 Years of Gene Discovery. Hum Mutat. 2016;37(6):524–531. doi: 10.1002/humu.22977 26919284

16. Pyeritz RE. Marfan syndrome and related disorders. Ann Thorac Surg. 2008;86(1):335–336. doi: 10.1016/j.athoracsur.2006.10.023 18578077

17. Loeys B, De Backer J, Van Acker P, Wettinck K, Pals G, Nuytinck L et al. Comprehensive molecular screening of the FBN1 gene favors locus homogeneity of classical Marfan syndrome. Hum Mutat. 2004;24(2):140–146. doi: 10.1002/humu.20070 15241795

18. Landis BJ, Veldtman GR, Ware SM. Genotype–phenotype correlations in Marfan syndrome. Heart. 2017;103(22):1750–1752. doi: 10.1136/heartjnl-2017-311513 28596305

19. Becerra-Muñoz VM, Gómez-Doblas JJ, Porras-Martín C, Such-Martínez M, Crespo-Leiro MG, Barriales-Villa R, et al. The importance of genotype-phenotype correlation in the clinical management of Marfan syndrome. Orphanet J Rare Dis. 2018;13(1):16. doi: 10.1186/s13023-017-0754-6 29357934

20. Faivre L, Collod-Beroud G, Callewaert B, Child A, Binquet C, Gautier E, et al. Clinical and mutation-type analysis from an international series of 198 probands with a pathogenic FBN1 exons 24–32 mutation. Eur J Hum Genet. 2009;17(4):491–501. doi: 10.1038/ejhg.2008.207 19002209

21. Faivre L, Collod-Beroud G, Loeys BL, Child A, Binquet C, Gautier E, et al. Effect of Mutation Type and Location on Clinical Outcome in 1,013 Probands with Marfan Syndrome or Related Phenotypes and FBN1 Mutations: An International Study. Am J Hum Genet. 2007;81(3):454–466. doi: 10.1086/520125 17701892

22. Maeda J, Kosaki K, Shiono J, Kouno K, Aeba R, Yamagishi H. Variable severity of cardiovascular phenotypes in patients with an early-onset form of Marfan syndrome harboring FBN1 mutations in exons 24–32. Heart Vessels. 2016;31(10):1717–1723. doi: 10.1007/s00380-016-0793-2 26796135

23. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016 Aug 18;536(7616):285–91. doi: 10.1038/nature19057 27535533

24. Détaint D, Faivre L, Collod-Beroud G, Child HA, Loeys BL, Binquet C, et al. Cardiovascular manifestations in men and women carrying a FBN1 mutation. Eur Heart J. 2010;31(18):2223–2229. doi: 10.1093/eurheartj/ehq258 20709720

25. Franken R, Groenink M, de Waard V, Feenstra HM, Scholte AJ, van den Berg MP, et al. Genotype impacts survival in Marfan syndrome. Eur Heart J. 2016;37(43):3285–3290. doi: 10.1093/eurheartj/ehv739 26787436

26. Loeys BL, Dietz HC, Braverman AC, Callewaert BL, De Backer J, Devereux RB, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47(7):476–485. doi: 10.1136/jmg.2009.072785 20591885

27. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.Bioinformatics. 2009;25(14):1754–1760. doi: 10.1093/bioinformatics/btp324 19451168

28. McKenna A, Hanna M, Banks E, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–1303. doi: 10.1101/gr.107524.110 20644199

29. Li H, Handsaker B, Wysoker A, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352 19505943

30. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–842. doi: 10.1093/bioinformatics/btq033 20110278

31. Ewing B, Hillier L, Wendl MC, Green P. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 1998;8(3):175–185. doi: 10.1101/gr.8.3.175 9521921

32. Yang H, Wang K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc. 2015;10(10):1556–1566. doi: 10.1038/nprot.2015.105 26379229

33. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–423. doi: 10.1038/gim.2015.30 25741868

34. Kassambara A. Practical Guide to Principal Component Methods in R. CreateSpace Independent Publishing Platform; 2017.

35. Yang X, Leslie G, Gentry-Maharaj A, et al. Evaluation of polygenic risk scores for ovarian cancer risk prediction in a prospective cohort study. J Med Genet. 2018;55(8):546–554. doi: 10.1136/jmedgenet-2018-105313 29730597

36. Ionita-Laza I, Lee S, Makarov V, Buxbaum JD, Lin X. Sequence Kernel Association Tests for the Combined Effect of Rare and Common Variants. Am J Hum Genet. 2013;92(6):841–853. doi: 10.1016/j.ajhg.2013.04.015 23684009

37. Rothman KJ. No adjustments are needed for multiple comparisons. Epidemiology. 1990;1(1):43–46. http://www.ncbi.nlm.nih.gov/pubmed/2081237. 2081237

38. Saville DJ. Multiple Comparison Procedures: The Practical Solution. Am Stat. 1990;44(2):174–180.

39. Althouse AD. Adjust for Multiple Comparisons? It’s Not That Simple. Ann Thorac Surg. 2016;101(5):1644–1645. doi: 10.1016/j.athoracsur.2015.11.024 27106412

40. Ridker PM, Danielson E, Fonseca FAH, et al. Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated C-Reactive Protein. N Engl J Med. 2008;359(21):2195–2207. doi: 10.1056/NEJMoa0807646 18997196

41. Loeys B. The search for genotype/phenotype correlation in Marfan syndrome: to be or not to be? Eur Heart J. 2016;37(43):3291–3293. doi: 10.1093/eurheartj/ehw154 27099264

42. Tiecke F, Katzke S, Booms P, Robinson PN, Neumann L, Godfrey M, et al. Classic, atypically severe and neonatal Marfan syndrome: twelve mutations and genotype-phenotype correlations in FBN1 exons 24–40. Eur J Hum Genet. 2001;9(1):13–21. doi: 10.1038/sj.ejhg.5200582 11175294

43. Schrijver I, Liu W, Odom R, Brenn T, Oefner P, Furthmayr H, Francke U. Premature termination mutations in FBN1: distinct effects on differential allelic expression and on protein and clinical phenotypes. Am J Hum Genet. 2002;71(2):223–237. doi: 10.1086/341581 12068374

44. Martínez-Quintana E., Caballero-Sánchez N., Rodríguez-González F., Garay-Sánchez P. Novel Marfan Syndrome-Associated Mutation in the FBN1 Gene Caused by Parental Mosaicism and Leading to Abnormal Limb Patterning. Mol Syndromol 2017;8:148–154 doi: 10.1159/000467909 28588436

45. Rommel K, Karck M, Haverich A, von Kodolitsch Y, Rybczynski M, Müller G, et al. Identification of 29 novel and nine recurrent fibrillin-1 (FBN1) mutations and genotype-phenotype correlations in 76 patients with Marfan syndrome. Hum Mutat. 2005;26(6):529–539. doi: 10.1002/humu.20239 16220557

46. Faivre L, Collod-Beroud G, Adès L, Arbustini E, Child A, Callewaert BL, et al. The new Ghent criteria for Marfan syndrome: what do they change? Clin Genet. 2012;81(5):433–442. doi: 10.1111/j.1399-0004.2011.01703.x 21564093

47. Baudhuin LM, Kotzer KE, Lagerstedt SA. Decreased frequency of FBN1 missense variants in Ghent criteria-positive Marfan syndrome and characterization of novel FBN1 variants. J Hum Genet. 2015;60(5):241–252. doi: 10.1038/jhg.2015.10 25652356

48. Seto T, Yamamoto T, Shimojima K, Shintaku H. A novel COL1A1 mutation in a family with osteogenesis imperfecta associated with phenotypic variabilities. Hum Genome Var. 2017;4:17007. doi: 10.1038/hgv.2017.7 28326186

49. Sato A, Ouellet J, Muneta T, Glorieux FH, Rauch F. Scoliosis in osteogenesis imperfecta caused by COL1A1/COL1A2 mutations—genotype–phenotype correlations and effect of bisphosphonate treatment. Bone. 2016;86:53–57. doi: 10.1016/j.bone.2016.02.018 26927310

50. Dudbridge F. Power and Predictive Accuracy of Polygenic Risk Scores. Wray NR, ed. PLoS Genet. 2013;9(3):e1003348. doi: 10.1371/journal.pgen.1003348 23555274

51. Loth E, Murphy DG, Spooren W. Defining Precision Medicine Approaches to Autism Spectrum Disorders: Concepts and Challenges. Front psychiatry. 2016;7:188. doi: 10.3389/fpsyt.2016.00188 27965598


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden