High levels of fasting glucose and glycosylated hemoglobin values are associated with hyperfiltration in a Spanish prediabetes cohort. The PREDAPS Study


Autoři: Antonio Rodríguez-Poncelas aff001;  Josep Franch-Nadal aff003;  Gabriel Coll-de Tuero aff001;  Manel Mata-Cases aff002;  Margarita Alonso-Fernández aff003;  Teresa Mur-Marti aff003;  Antonio Ruiz aff003;  Carolina Giraldez-García aff003;  Enrique Regidor aff003
Působiště autorů: METHARISC Group, USR Girona, IDIAP Gol i Gorina, Girona, Spain aff001;  Grup de Recerca Epidemiològica en Diabetis des de l´Atenció Primària (DAP_CAT) Jordi Gol, Barcelona, Spain aff002;  RedGDPS Foundation, Madrid, Spain aff003;  USR Barcelona ciutat–IDIAP Jordi Gol, Barcelona, Spain aff004;  CIBER Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain aff005;  Departament de Medicina, Universitat de Barcelona, Barcelona, Spain aff006;  Departamento de Ciencias Médicas, Universitat de Girona, Girona, Spain aff007;  Centro de Salud La Ería, Asturias, Spain aff008;  Departamento de Medicina Preventiva y Salud Publica, Universidad de Oviedo, Asturias, Spain aff009;  Mutua Terrassa, Barcelona, Spain aff010;  Centro de Salud Universitario Pinto, Madrid, Spain aff011;  Hospital Universitario Infanta Elena, Madrid, Spain aff012;  Departamento de Salud Pública y Materno-Infantil, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain aff013;  CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain aff014;  Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain aff015
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222848

Souhrn

Aim

This study aimed to investigate whether different levels of fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) in prediabetes are associated with hyperfiltration.

Methods

A prospective cohort of 2,022 individuals aged 30–74 years took part in the PREDAPS Study. One cohort of 1,184 participants with prediabetes and another cohort of 838 participants with normal FPG and normal HbA1c were followed for 5 years. Hyperfiltration was defined as an estimated glomerular filtration rate (eGFR) above the age- and gender-specific 95th percentile for healthy control participants, while hypofiltration was defined as an eGFR below the 5th percentile. The prevalence of hyperfiltration was compared for different levels of prediabetes: level 1 of prediabetes: FPG <100 mg/dL plus HbA1c 5.7–6.0% or FPG 100–109 mg/dL plus HbA1c < 5.7%; level 2 of prediabetes: FPG <100 mg/dL plus HbA1c 6.1–6.4% or FPG 100–109 mg/dL plus HbA1c 5.7–6.0% or FPG 110–125 mg/dL plus HbA1c <5.7% and level 3 of prediabetes: FPG 100–109 mg/dL plus HbA1c 6.1–6.4% or FPG 110–125 mg/dL plus HbA1c 5.7–6.4%.

Results

The participants with hyperfiltration were significantly younger, had a higher percentage of active smokers, and lower levels of hemoglobin and less use of ACEIs or ARBs.

Only level 3 prediabetes based on FPG 100–109 mg/dL plus HbA1c 6.1–6.4% or FPG 110–125 mg/dL plus HbA1c 5.7–6.4% had a significantly higher odds ratio (OR) of hyperfiltration (OR 1.69 (1.05–2.74); P < 0.001) compared with no prediabetes (FPG < 100 mg/dL and HbA1c < 5.7%) after adjustment for different factors. The odds ratios for different levels of HbA1c alone in prediabetes increased progressively, but not significantly.

Conclusions

Level 3 of prediabetes based on FPG 100–109 mg/dL plus HbA1c 6.1–6.4% or FPG 110–125 mg/dL plus HbA1c 5.7–6.4% had a significantly higher OR of hyperfiltration compared with participants without prediabetes.

Klíčová slova:

Medicine and health sciences – Diagnostic medicine – Diabetes diagnosis and management – HbA1c – Vascular medicine – Blood pressure – Hypertension – Renal physiology – Glomerular filtration rate – Endocrinology – Endocrine disorders – Metabolic disorders – Nephrology – Chronic kidney disease – Biology and life sciences – Biochemistry – Proteins – Hemoglobin – Physiology – Anatomy – Renal system – Kidneys – Nutrition – Diet


Zdroje

1. Mogensen CE, Christensen CK, Pedersen MM, Alberti KG, Boye N, Christensen T et al. Renal and glycemic determinants of glomerular hyperfiltration in normoalbuminuric diabetics. J Diabet Complications. 1990 Oct-Dec;4(4):159–65. 2151227.

2. Magee GM, Bilous RW, Cardwell CR, Hunter SJ, Kee F, Fogarty DG. Is hyperfiltration associated with the future risk of developing diabetic nephropathy? A meta-analysis. Diabetologia. 2009 Apr;52(4):691–7. doi: 10.1007/s00125-009-1268-0 Epub 2009 Feb 7. 19198800.

3. Ruggenenti P, Porrini EL, Gaspari F, Motterlini N, Cannata A, Carrara F et al. GFR Study Investigators. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care. 2012 Oct;35(10):2061–8. Epub 2012 Jul 6. doi: 10.2337/dc11-2189 22773704; PubMed Central PMCID: PMC3447826.

4. Melsom T, Mathisen UD, Ingebretsen OC, Jenssen TG, Njølstad I, Solbu MD et al. Impaired fasting glucose is associated with renal hyperfiltration in the general population. Diabetes Care. 2011 Jul;34(7):1546–51. doi: 10.2337/dc11-0235 Epub 2011 May 18. 21593291; PubMed Central PMCID: PMC3120190.

5. Melsom T, Schei J, Stefansson VT, Solbu MD, Jenssen TG, Mathisen UD et al. Prediabetes and Risk of Glomerular Hyperfiltration and Albuminuria in the General Nondiabetic Population: A Prospective Cohort Study. Am J Kidney Dis. 2016 Jun;67(6):841–50. doi: 10.1053/j.ajkd.2015.10.025 Epub 2015 Dec 29. 26744126.

6. Okada R, Yasuda Y, Tsushita K, Wakai K, Hamajima N, Matsuo S. Glomerular hyperfiltration in prediabetes and prehypertension. Nephrol Dial Transplant. 2012 May;27(5):1821–5. doi: 10.1093/ndt/gfr651 Epub 2011 Dec 2. 22140135.

7. Okada R, Wakai K, Naito M, Morita E, Kawai S, Yin G et al. Renal hyperfiltration in prediabetes confirmed by fasting plasma glucose and hemoglobin A1c. Ren Fail. 2012;34(9):1084–90. doi: 10.3109/0886022X.2012.717516 22978359.

8. Pruijm M, Wuerzner G, Maillard M, Bovet P, Renaud C, Bochud M et al. Glomerular hyperfiltration and increased proximal sodium reabsorption in subjects with type 2 diabetes or impaired fasting glucose in a population of the African region. Nephrol Dial Transplant. 2010 Jul;25(7):2225–31. doi: 10.1093/ndt/gfq008Epub 2010 Feb 1. 20124214.

9. Hu W, Hao H, Yu W, Wu X, Zhou H. Association of elevated glycosylated hemoglobin A1c with hyperfiltration in a middle-aged and elderly Chinese population with prediabetes or newly diagnosed diabetes: a cross-sectional study. BMC Endocr Disord. 2015 Sep 12; 15:47. doi: 10.1186/s12902-015-0043-0 26363801; PubMed Central PMCID: PMC4568072.

10. Sun ZJ, Yang YC, Wu JS, Wang MC, Chang CJ, Lu FH. Increased risk of glomerular hyperfiltration in subjects with impaired glucose tolerance and newly diagnosed diabetes. Nephrol Dial Transplant. 2016 Aug;31(8):1295–301. doi: 10.1093/ndt/gfv385 Epub 2015 Nov 25. 26610595.

11. Rodriguez-Poncelas A, Coll-de-Tuero G, Blanch J, Comas-Cufí M, Saez M, Barceló MA. Prediabetes is associated with glomerular hyperfiltration in a European Mediterranean cohort study. J Nephrol. 2018 Oct;31(5):743–749. doi: 10.1007/s40620-018-0524-0 Epub 2018 Aug 27. 30151699.

12. Wahba IM, Mak RH. Obesity and obesity-initiated metabolic syndrome: mechanistic links to chronic kidney disease. Clin J Am Soc Nephrol. 2007 May;2(3):550–62. Epub 2007 Mar 14. Review. doi: 10.2215/CJN.04071206 17699463.

13. Tomaszewski M, Charchar FJ, Maric C, McClure J, Crawford L, Grzeszczak W et al. Glomerular hyperfiltration: a new marker of metabolic risk. Kidney Int. 2007 Apr;71(8):816–21. Epub 2007 Feb 28. doi: 10.1038/sj.ki.5002160 17332732.

14. Nerpin E, Risérus U, Ingelsson E, Sundström J, Jobs M, Larsson A et al. Insulin sensitivity measured with euglycemic clamp is independently associated with glomerular filtration rate in a community-based cohort. Diabetes Care. 2008 Aug;31(8):1550–5. doi: 10.2337/dc08-0369 Epub 2008 May 28. 18509205; PubMed Central PMCID: PMC2494665.

15. Hostetter TH. Diabetic nephropathy. Metabolic versus hemodynamic considerations. Diabetes Care. 1992 Sep;15(9):1205–15. Review. doi: 10.2337/diacare.15.9.1205 1396017.

16. Brenner BM, Lawler EV, Mackenzie HS. The hyperfiltration theory: a paradigm shifts in nephrology. Kidney Int. 1996 Jun;49(6):1774–7. Review. doi: 10.1038/ki.1996.265 8743495.

17. Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol. 2012 Feb 21;8(5):293–300. doi: 10.1038/nrneph.2012.19 Review. 22349487.

18. Serrano R, García-Soidán FJ, Díaz-Redondo A, Artola S, Franch J, Díez J, et al. Cohort study in primary health care on the evolution of patients with prediabetes (PREDAPS): basis and methodology. Rev Esp Salud Pública. 2013;87:121–35 doi: 10.4321/S1135-57272013000200003 23775102

19. American Diabetes Association. Standards of medical care in diabetes-2011.Diabetes Care. 2011;34 Suppl 1:S11–61.

20. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA,et al.; International Diabetes Federation Task Force on Epidemiology and Prevention; Hational Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120:1640–5. doi: 10.1161/CIRCULATIONAHA.109.192644 19805654

21. Panagiotakos DB, Pitsavos C, Stefanadis C. Dietary patterns: a Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr Metab Cardiovasc Dis 2006; 16: 559–568. doi: 10.1016/j.numecd.2005.08.006 17126772

22. World Health Organization. Global recommendations on physical activity for health. Geneva: World Health Organization; 2010.

23. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009 May 5;150(9):604–12. Erratum in: Ann Intern Med. 2011 Sep 20;155(6):408. doi: 10.7326/0003-4819-150-9-200905050-00006 19414839; PubMed Central PMCID: PMC2763564.

24. Chagnac A, Weinstein T, Herman M, Hirsh J, Gafter U, Ori Y. The effects of weight loss on renal function in patients with severe obesity. J Am Soc Nephrol. 2003 Jun;14(6):1480–6. doi: 10.1097/01.asn.0000068462.38661.89 12761248.

25. Chagnac A, Herman M, Zingerman B, Erman A, Rozen-Zvi B, Hirsh J et al. Obesity-induced glomerular hyperfiltration: its involvement in the pathogenesis of tubular sodium reabsorption. Nephrol Dial Transplant. 2008 Dec;23(12): 3946–52. doi: 10.1093/ndt/gfn379 Epub 2008 Jul 12. 18622024.

26. Moriya T, Tsuchiya A, Okizaki S, Hayashi A, Tanaka K, Shichiri M. Glomerular hyperfiltration and increased glomerular filtration surface are associated with renal function decline in normo- and microalbuminuric type 2 diabetes. Kidney Int. 2012 Mar;81(5):486–93. doi: 10.1038/ki.2011.404 Epub 2011 Dec 7. 22157655.

27. Naderpoor N, Lyons JG, Mousa A, Ranasinha S, de Courten MPJ, Soldatos G et al. Higher glomerular filtration rate is related to insulin resistance but not to obesity in a predominantly obese non-diabetic cohort. Sci Rep. 2017 Apr 3; 7:45522. doi: 10.1038/srep45522 Erratum in: Sci Rep. 2018 Mar 19; 8:46962. 28368024; PubMed Central PMCID: PMC5377310

28. Vallon V, Blantz RC, Thomson S. Glomerular hyperfiltration and the salt paradox in early type 1 diabetes mellitus: a tubulo-centric view. J Am Soc Nephrol. 2003 Feb;14(2):530–7. Review. Erratum in: J Am Soc Nephrol. 2003 May;14(5):following table of contents. doi: 10.1097/01.asn.0000051700.07403.27 12538755.

29. Hoy WE, Douglas-Denton RN, Hughson MD, Cass A, Johnson K, Bertram JF. A stereological study of glomerular number and volume: Preliminary findings in a multiracial study of kidneys at autopsy. Kidney Int. 2003; 63(S83):31–7.

30. Sunder-Plassmann G., Walter H. Hörl. A Critical appraisal for definition of hyperfiltration. American Journal of Kidney Diseases, Vol 43, No 2 (February), 2004: pp 396–397 doi: 10.1053/j.ajkd.2003.11.017 14750109

31. Cachat F, Combescure C, Cauderay M, Girardin E, Chehade H. A systematic review of glomerular hyperfiltration assessment and definition in the medical literature. Clin J Am Soc Nephrol. 2015;10(3):382–9. doi: 10.2215/CJN.03080314 25568216

32. Premaratne E, Verma S, Ekinci EI, Theverkalam G, Jerums G, MacIsaac RJ. The impact of hyperfiltration on the diabetic kidney. Diabetes Metab. 2015 Feb;41(1):5–17. doi: 10.1016/j.diabet.2014.10.003 Epub 2014 Nov 18. Review. 25457474

33. Goldberg I, Cohen E, Goldberg E, Shochat T, Krause I. Impaired fasting glucose is associated with lower glomerular filtration rate decline among men but not women -a large cohort study from Israel. Eur J Intern Med 2018;57:39–43 doi: 10.1016/j.ejim.2018.07.013 30031597

34. Stevens LA, Schmid CH, Greene T, Zhang YL, Beck GJ, Froissart M, et al. Comparative performance of the CKD Epidemiology Collaboration (CKD-EPI) and the Modification of Diet in Renal Disease (MDRD) Study equations for estimating GFR levels above 60 mL/min/1.73 m2. Am J Kidney Dis. 2010 Sep;56(3):486–95. doi: 10.1053/j.ajkd.2010.03.026 Epub 2010 Jun 16. 20557989; PubMed Central PMCID: PMC2926290.

35. Kawata I, Koshi T, Hirabayashi K, Koike H, Sato Y, Yamashita K, et al. Prediabetes defined by the International Expert Committee as a risk for development of glomerular hyperfiltration. Acta Diabetol 2019;56:525–529. doi: 10.1007/s00592-019-01287-9 30707298


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden