How does the content of nutrients in soil affect the health status of trees in city parks?


Autoři: Tomasz Kleiber aff001;  Michał Krzyżaniak aff002;  Dariusz Świerk aff002;  Anna Haenel aff001;  Sylwia Gałecka aff001
Působiště autorů: Department of Plant Nutrition, Poznan University of Life Sciences, Poznań, Poland aff001;  Department of Landscape Architecture, Poznan University of Life Sciences, Poznań, Poland aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0221514

Souhrn

Trees have multi-aspect influence on the microclimate in urbanised areas. Therefore, it is important to investigate the biotic and abiotic factors affecting their health. The aim of the conducted study was to assess the chemical composition of soils and the nutritional status of lime and horse chestnut trees in selected sites and the influence of these factors on the condition and health of these tree species in urbanised areas. The research was conducted on selected trees (n = 643) growing in different parts of the city. The soils and plants were analysed for the content of macro- and microelements, sodium and heavy metals. A canonical variation analysis (CVA)–the canonical variant of Fisher's linear discriminant analysis (LDA) was used to construct the model. The CVA enabled the creation of 4 CCA models. The research showed that in general, the soil in all the sites of lime and horse chestnut trees was alkalised–at the same time it was characterised by low salinity. Despite the alkaline soil the statistical analysis showed a positive correlation between the content of manganese in the lime leaves and the deterioration of their health. In spite of that due to the satisfactory health status and condition of trees in most locations temporary guide values of nutrients were proposed for trees growing in urbanised areas. The following temporary guide values of nutrients were proposed for the horse chestnut trees (% d. m.): N 2.38%-4.71%, P 0.24%-0.46%, K 1.13%-2.31%, Ca 1.05%-2.12%, Mg 0.16%-0.42%, S 0.12%-0.23%; Fe 89.8–198.8, Zn 17.6–33.1, Cu 7.36–19.61 (mg kg-1 d. m.). The following temporary guide values were proposed for the small-leaved lime-trees (% d. m.): N 2.45%-3.22%, P 0.27%-0.42%, K 1.52%-2.86%, Ca 1.43%-2.02%, Mg 0.19%-0.35%, S 0.19%-0.25%; Fe 137.6–174.3, Zn 20.2–23.8, Cu 8.36–9.79 (mg kg-1 d. m.).

Klíčová slova:

Biology and life sciences – Plant science – Plant anatomy – Leaves – Organisms – Eukaryota – Animals – Vertebrates – Amniotes – Mammals – Equines – Horses – Plants – Trees – Chestnuts – Toxicology – Toxic agents – Toxins – Heavy metals – Physical sciences – Chemistry – Chemical elements – Manganese – Metallic lead – Cadmium – Medicine and health sciences – Pathology and laboratory medicine


Zdroje

1. Maco SE, McPherson EG. A practical approach to assessing structure, function, and value of street tree populations in small communities. Arboric Urban For. 2003;29: 84–97.

2. Sjöman H, Östberg J, Bühler O. Diversity and distribution of the urban tree population in ten major Nordic cities. Urban For Urban Green. 2012;11: 31–39. doi: 10.1016/j.ufug.2011.09.004

3. Thomsen P, Bühler O, Kristoffersen P. Diversity of street tree populations in larger Danish municipalities. Urban For Urban Green. 2016;15: 200–210. doi: 10.1016/j.ufug.2015.12.006

4. Arnberger A, Eder R. The influence of green space on community attachment of urban and suburban residents. Urban For Urban Green. 2012;11: 41–49. doi: 10.1016/j.ufug.2011.11.003

5. Blanusa T, Fantozzi F, Monaci F, Bargagli R. Leaf trapping and retention of particles by holm oak and other common tree species in Mediterranean urban environments. Urban For Urban Green. 2015;14: 1095–1101. doi: 10.1016/j.ufug.2015.10.004

6. Mitchell R, Popham F. Effect of exposure to natural environment on health inequalities: an observational population study. Lancet. 2008;372: 1655–1660. doi: 10.1016/S0140-6736(08)61689-X 18994663

7. Qin J, Zhou X, Sun C, Leng H, Lian Z. Influence of green spaces on environmental satisfaction and physiological status of urban residents. Urban For Urban Green. 2013;12: 490–497. doi: 10.1016/j.ufug.2013.05.005

8. Tyrväinen L, Mäkinen K, Schipperijn J. Tools for mapping social values of urban woodlands and other green areas. Landsc Urban Plan. 2007;79: 5–19. doi: 10.1016/j.landurbplan.2006.03.003

9. Dmuchowski W, Bytnerowicz A. Long-term (1992–2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: Determination by chemical analysis of moss bags and leaves of Crimean linden. Environ Pollut. 2009;157: 3413–3421. doi: 10.1016/j.envpol.2009.06.019 19631430

10. Nowak DJ, Crane DE, Stevens JC. Air pollution removal by urban trees and shrubs in the United States. Urban For Urban Green. 2006;4: 115–123. doi: 10.1016/j.ufug.2006.01.007

11. Qiu Y, Guan D, Song W, Huang K. Capture of heavy metals and sulfur by foliar dust in urban Huizhou, Guangdong Province, China. Chemosphere. 2009;75: 447–452. doi: 10.1016/j.chemosphere.2008.12.061 19201444

12. Baumgardner D, Varela S, Escobedo FJ, Chacalo A, Ochoa C. The role of a peri-urban forest on air quality improvement in the Mexico City megalopolis. Environ Pollut. 2012;163: 174–183. doi: 10.1016/j.envpol.2011.12.016 22245735

13. Paoletti E, Bardelli T, Giovannini G, Pecchioli L. Air quality impact of an urban park over time. Procedia Environ Sci. 2011;4: 10–16. doi: 10.1016/j.proenv.2011.03.002

14. Baldasano JM, Valera E, Jiménez P. Air quality data from large cities. Sci Total Environ. 2003;307: 141–165. doi: 10.1016/S0048-9697(02)00537-5 12711431

15. De Ridder K, Adamec V, Bañuelos A, Bruse M, Bürger M, Damsgaard O, et al. An integrated methodology to assess the benefits of urban green space. Sci Total Environ. 2004;334–335: 489–497. doi: 10.1016/j.scitotenv.2004.04.054 15504535

16. Holopainen M, Leino O, Kämäri H, Talvitie M. Drought damage in the park forests of the city of Helsinki. Urban For Urban Green. 2006;4: 75–83. doi: 10.1016/j.ufug.2005.11.002

17. Stravinskienė V, Snieškienė V, Stankevičienė A. Health condition of Tilia cordata Mill. trees growing in the urban environment. Urban For Urban Green. 2015;14: 115–122. doi: 10.1016/j.ufug.2014.12.006

18. Bach A, Pawłowska B, Kraus D, Malinowska Z, Pniak M, Bartyska M. Urban ornamental trees reaction to the soil sodium chlorine salinity and pH factor in Krakow. Zeszyty Problemowe Postepow Nauk Rolniczych. 2006;510: 39–48.

19. Bryson GM, Barker AV. Sodium accumulation in soils and plants along Massachusetts roadsides. Commun Soil Sci Plant Anal. 2002;33: 67–78. doi: 10.1081/CSS-120002378

20. Hartl W, Erhart E. Effects of potassium carbonate as an alternative road de‐icer to sodium chloride on soil chemical properties. Ann Appl Biol. 2002;140: 271–277. doi: 10.1111/j.1744-7348.2002.tb00181.x

21. Swoczyna T, Kalaji HM, Pietkiewicz S, Borowski J. Ability of various tree species to acclimation in urban environments probed with the JIP-test. Urban For Urban Green. 2015;14: 544–553. doi: 10.1016/j.ufug.2015.05.005

22. Carpenter RJ, Hill RS, Jordan GJ. Leaf Cuticular Morphology Links Platanaceae and Proteaceae. Int J Plant Sci. 2005;166: 843–855. doi: 10.1086/431806

23. Bassuk N, Deanna FC, Marranca BZ, Barb N. Recommended urban trees: site assessment and tree selection for stress tolerance. Ithaca, New York: Urban Horticulture Institute. Cornell University; 2009.

24. Cekstere G, Osvalde A. A study of chemical characteristics of soil in relation to street trees status in Riga (Latvia). Urban For Urban Green. 2013;12: 69–78. doi: 10.1016/j.ufug.2012.09.004

25. Hak C, Larssen S, Randall S, Guerreiro C, Denby B. Traffic and Air Quality—Contribution of Traffic to Urban Air Quality in European Cities. ETC/ACC; 2010.

26. Kumar P, Pirjola L, Ketzel M, Harrison RM. Nanoparticle emissions from 11 non-vehicle exhaust sources–A review. Atmos Environ. 2013;67: 252–277. doi: 10.1016/j.atmosenv.2012.11.011

27. Baycu G, Tolunay D, Özden H, Günebakan S. Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environ Pollut. 2006;143: 545–554. doi: 10.1016/j.envpol.2005.10.050 16480798

28. Oleksyn J, Kloeppel BD, Lukasiewicz S, Karolewski P, Reich PB. Ecophysiology of horse-chestnut (Aesculus hippocastanum L.) in degraded and restored urban sites. Pol J Ecol. 2007;55: 245–260.

29. Pavlović M, Rakić T, Pavlović D, Kostić O, Jarić S, Mataruga Z, et al. Seasonal variations of trace element contents in leaves and bark of horse chestnut (Aesculus hippocastanum L.) in urban and industrial regions in Serbia. Arch Biol Sci. 2017;69: 201–214.

30. Deljanin IV, Tomašević MN, Urošević MPA, Antanasijević DZ, Perić-Grujić AA, Ristić MĐ. Lead isotopic composition in tree leaves as tracers of lead in an urban environment. Ecol Indic. 2014;45: 640–647. doi: 10.1016/j.ecolind.2014.05.027

31. Kabata-Pendias A. Trace Elements in Soils and Plants, Fourth Edition. In: CRC Press [Internet]. 18 Oct 2010

32. Petrova S, Yurukova L, Velcheva I. Possibilities of using deciduous tree species in trace element biomonitoring in an urban area (Plovdiv, Bulgaria). Atmos Pollut Res. 2014;5: 196–202. doi: 10.5094/APR.2014.024

33. Piczak K, Leśniewicz A, Żyrnicki W. Metal Concentrations in Deciduous Tree Leaves from Urban Areas in Poland. Environ Monit Assess. 2003;86: 273–287. doi: 10.1023/A:1024076504099 12858968

34. McDonnell MJ, Hahs AK. The use of gradient analysis studies in advancing our understanding of the ecology of urbanizing landscapes: current status and future directions. Landscape Ecol. 2008;23: 1143–1155. doi: 10.1007/s10980-008-9253-4

35. Parysek JJ, Mierzejewska L. Poznań. Cities. 2006;23: 291–305. doi: 10.1016/j.cities.2006.04.001

36. Urbański P, Krzyżaniak M, Rydzewska A. Zieleń Poznania i innych miast w Polsce (Public greenery of the city of Poznań and other cities in Poland). Nauka Przyr Technol. 2009;3 (1), #44.

37. Kosmala M. A method of trees condition assessment including safety and mechanical damages. Warszawa: Instytut Gospodarki Przestrzennej i Mieszkalnictwa; 2009.

38. Nowosielski O. Methods for determining the need for fertilization. 2nd ed. Warszawa: Państwowe Wydawnictwo Rolnicze i Leśne; 1974.

39. Czerniawska W, Strahl A, editors. Metody badań laboratoryjnych w stacjach chemiczno-rolniczych. Cz. 4: Badania gleb, ziem i podłoży spod warzyw i kwiatów oraz części wskaźnikowych roślin w celach diagnostycznych. Puławy: Institute of Soil Science and Plant Cultivation (IUNG); 1983.

40. Kamiński W, Kordasz T, Strahl A, Bałuka T, Walczak K. Analytical methods in agricultural chemistry stations. Part II—plant analyses. I. Puławy: Institute of Soil Science and Plant Cultivation; 1972.

41. Bosiacki M, Roszyk J. The comparing methods of mineralization of plant material on the content of heavy metals. Research and Didactic Apparatus. 2010;15: 37–41.

42. Šmilauer P, Lepš J. Multivariate Analysis of Ecological Data using CANOCO. Cambridge University Press; 2003.

43. Capra GF, Ganga A, Grilli E, Vacca S, Buondonno A. A review on anthropogenic soils from a worldwide perspective. J Soils Sediments. 2015;15: 1602–1618. doi: 10.1007/s11368-015-1110-x

44. Horváth A, Kalicz P, Farsang A, Balázs P, Berki I, Bidló A. Influence of human impacts on trace metal accumulation in soils of two Hungarian cities. Sci Total Environ. 2018;637–638: 1197–1208. doi: 10.1016/j.scitotenv.2018.05.033 29801213

45. Hulisz P, Charzyński P, Greinert A. Urban soil resources of medium-sized cities in Poland: a comparative case study of Toruń and Zielona Góra. J Soils Sediments. 2018;18: 358–372. doi: 10.1007/s11368-016-1596-x

46. Bartens J, Wiseman PE, Smiley ET. Stability of landscape trees in engineered and conventional urban soil mixes. Urban For Urban Green. 2010;9: 333–338. doi: 10.1016/j.ufug.2010.06.005

47. Burghardt W. Soils in urban and industrial environments. J Plant Nutr Soil Sci. 1994;157: 205–214. doi: 10.1002/jpln.19941570308

48. Breś W. Anthropopressure factors causing trees to die off in urban landscape. Nauka Przyr Technol. 2008; 2 (4), #31.

49. Golcz A, Kozik E, Golcz-Polaszewska M, Koscielniak K, Musil N. Soils and plants in the Nadolnik Park in Poznań. Part I. Physical and chemical properties of soils and the content of macroelements in plants. Nauka Przyr Technol. 2014; 8 (3), #32.

50. Kleiber T. Nutritional resources of soil in the localities of monumental large-leaved linden (Tilia platyphyllos f. aurea) alleys. Ecological Chemistry and Engineering A. 2009;Vol. 16: 277–286.

51. Ordóñez-Barona C, Sabetski V, Millward AA, Steenberg J. De-icing salt contamination reduces urban tree performance in structural soil cells. Environ Pollut. 2018;234: 562–571. doi: 10.1016/j.envpol.2017.11.101 29223120

52. Setälä H, Francini G, Allen JA, Jumpponen A, Hui N, Kotze DJ. Urban parks provide ecosystem services by retaining metals and nutrients in soils. Environ Pollut. 2017;231: 451–461. doi: 10.1016/j.envpol.2017.08.010 28830018

53. Bosiacki M, Kleiber T, Markiewicz B. Continuous and Induced Phytoextraction—Plant-Based Methods to Remove Heavy Metals from Contaminated Soil. 2014. doi: 10.5772/572571

54. Argyraki A, Kelepertzis E, Botsou F, Paraskevopoulou V, Katsikis I, Trigoni M. Environmental availability of trace elements (Pb, Cd, Zn, Cu) in soil from urban, suburban, rural and mining areas of Attica, Hellas. J Geochem Explor. 2018;187: 201–213. doi: 10.1016/j.gexplo.2017.09.004

55. Mao Y, Sang S, Liu S, Jia J. Spatial distribution of pH and organic matter in urban soils and its implications on site-specific land uses in Xuzhou, China. C R Biol. 2014;337: 332–337. doi: 10.1016/j.crvi.2014.02.008 24841960

56. Hołtra A, Zamorska-Wojdyła D. The input of trace elements from the motor transport into urban soils of Wrocław, Poland. Sci Total Environ. 2018;631–632: 1163–1174. doi: 10.1016/j.scitotenv.2018.03.096 29727942

57. Zawadzka O, Markowicz KM, Pietruczuk A, Zielinski T, Jaroslawski J. Impact of urban pollution emitted in Warsaw on aerosol properties. Atmos Environ. 2013;69: 15–28. doi: 10.1016/j.atmosenv.2012.11.065

58. Gałuszka A, Migaszewski ZM, Podlaski R, Dołęgowska S, Michalik A. The influence of chloride deicers on mineral nutrition and the health status of roadside trees in the city of Kielce, Poland. Environ Monit Assess. 2011;176: 451–464. doi: 10.1007/s10661-010-1596-z 20617457

59. Ghosh S, Scharenbroch BC, Burcham D, Ow LF, Shenbagavalli S, Mahimairaja S. Influence of soil properties on street tree attributes in Singapore. Urban Ecosyst. 2016;19: 949–967. doi: 10.1007/s11252-016-0530-8

60. Pouyat RV, Yesilonis ID, Russell-Anelli J, Neerchal NK. Soil Chemical and Physical Properties That Differentiate Urban Land-Use and Cover Types. Soil Sci Soc Am J. 2007;71: 1010. doi: 10.2136/sssaj2006.0164

61. Gaberšek M, Gosar M. Geochemistry of urban soil in the industrial town of Maribor, Slovenia. J Geochem Explor. 2018;187: 141–154. doi: 10.1016/j.gexplo.2017.06.001

62. Geilfus C-M, Carpentier SC, Zavišić A, Polle A. Changes in the fine root proteome of Fagus sylvatica L. trees associated with P-deficiency and amelioration of P-deficiency. J Proteomics. 2017;169: 33–40. doi: 10.1016/j.jprot.2017.06.012 28625739

63. Sucunza FA, Gutierrez Boem FH, Garcia FO, Boxler M, Rubio G. Long-term phosphorus fertilization of wheat, soybean and maize on Mollisols: Soil test trends, critical levels and balances. Eur J Agron. 2018;96: 87–95. doi: 10.1016/j.eja.2018.03.004

64. Scharenbroch BC, Catania M. Soil Quality Attributes as Indicators of Urban Tree Performance. Arboric Urban For. 2012;38: 214–228.

65. Guo Q, Zhu G, Strauss H, Peters M, Chen T, Yang J, et al. Tracing the sources of sulfur in Beijing soils with stable sulfur isotopes. J Geochem Explor. 2016;161: 112–118. doi: 10.1016/j.gexplo.2015.11.010

66. Kozik E, Golcz-Polaszewska M, Golcz A, Kuszak E, Koscielniak K. Soils and plants in the Nadolnik Park in Poznań. Part II. Content of microelements, cadmium and lead in soil and plants. Nauka Przyr Technol. 2014; 8 (3), #33.

67. Johnson LE, Bishop TFA, Birch GF. Modelling drivers and distribution of lead and zinc concentrations in soils of an urban catchment (Sydney estuary, Australia). Sci Total Environ. 2017;598: 168–178. doi: 10.1016/j.scitotenv.2017.04.033 28441595

68. Foti L, Dubs F, Gignoux J, Lata J-C, Lerch TZ, Mathieu J, et al. Trace element concentrations along a gradient of urban pressure in forest and lawn soils of the Paris region (France). Sci Total Environ. 2017;598: 938–948. doi: 10.1016/j.scitotenv.2017.04.111 28468120

69. Czarnowska K, Kozanecka T. Accumulation of Zn, Pb, Cu and Cd in anthropogenic soils of Warsaw. Soil Science Annual. 2003;54: 77–81.

70. Lis J, Pasieczna A. Geochemical research in the Poznań area. Polish Geological Review. 2005;53: 470–474.

71. Czarnowska K. Level of some heavy metals in soils and leaves of tree species from the town of Łodź. Soil Science Annual. 1997;48: 49–61.

72. Łukasiewicz S. The physical structure of the land, organic substances content, and the chemical composition of soil comprising the subsoil of 21 urban greenery locations in the territory of Poznań. Part IV. Content of microelements: Cl, Fe, Mn, Zn, Cu, B and Na, Pb, Cd. The “EC” salinity index. Physiographic research. 2012;63: 49–75. doi: 10.2478/v10116-012-0002-7

73. Magiera T, Strzyszcz Z, Rachwal M. Mapping particulate pollution loads using soil magnetometry in urban forests in the Upper Silesia Industrial Region, Poland. For Ecol Manage. 2007;248: 36–42. doi: 10.1016/j.foreco.2007.02.034

74. Wong CSC, Li X, Thornton I. Urban environmental geochemistry of trace metals. Environ Pollut. 2006;142: 1–16. doi: 10.1016/j.envpol.2005.09.004 16297517

75. Cárdenas-Navarro R, Adamowicz S, Robin P. Nitrate accumulation in plants: a role for water. J Exp Bot. 1999;50: 613–624. doi: 10.1093/jxb/50.334.613

76. Lominadze S, Nakashidze N. The influence of nitrogen fertilizers on nitrate accumulation in leaves of orange Washington Navel. Ann Agrar Sci. 2016;14: 233–236. doi: 10.1016/j.aasci.2016.07.008

77. Sobolewski R, Chohura P. The chemical properties of soils as trees nutrition state factor. Zesz Nauk UP Wroc. 2015;CXIV: 61–73.

78. Leigh RA, Jones RGW. A Hypothesis Relating Critical Potassium Concentrations for Growth to the Distribution and Functions of This Ion in the Plant Cell. New Phytol. 1984;97: 1–13. doi: 10.1111/j.1469-8137.1984.tb04103.x

79. Nikolic M, Pavlovic J. Chapter 3—Plant Responses to Iron Deficiency and Toxicity and Iron Use Efficiency in Plants. In: Hossain MA, Kamiya T, Burritt DJ, Tran L-SP, Fujiwara T, editors. Plant Micronutrient Use Efficiency. Academic Press; 2018. pp. 55–69. doi: 10.1016/B978-0-12-812104-7.00004–6

80. Cekstere G, Osvalde A, Karlsons A, Nollendorfs V, Paegle G. The effect of urban environment on the mineral nutrition status of street trees in Riga, the problems and possible solution. Latvijas Universitates raksti. 2005.

81. Equiza MA, Calvo-Polanco M, Cirelli D, Señorans J, Wartenbe M, Saunders C, et al. Long-term impact of road salt (NaCl) on soil and urban trees in Edmonton, Canada. Urban For Urban Green. 2017;21: 16–28. doi: 10.1016/j.ufug.2016.11.003

82. Cheshmazar E, Arfaeinia H, Karimyan K, Sharafi H, Hashemi SE. Dataset for effect comparison of irrigation by wastewater and ground water on amount of heavy metals in soil and vegetables: Accumulation, transfer factor and health risk assessment. Data Brief. 2018;18: 1702–1710. doi: 10.1016/j.dib.2018.04.108 29904670

83. Keshavarzi B, Hassanaghaei M, Moore F, Rastegari Mehr M, Soltanian S, Lahijanzadeh AR, et al. Heavy metal contamination and health risk assessment in three commercial fish species in the Persian Gulf. Mar Pollut Bull. 2018;129: 245–252. doi: 10.1016/j.marpolbul.2018.02.032 29680544

84. Wu W, Wu P, Yang F, Sun D, Zhang D-X, Zhou Y-K. Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Sci Total Environ. 2018;630: 53–61. doi: 10.1016/j.scitotenv.2018.02.183 29475113

85. Białobok S, editor. Życie drzew w skażonym środowisku. Warszawa: Państwowe Wydawnictwo Naukowe; 1989.

86. Aničić M, Spasić T, Tomašević M, Rajšić S, Tasić M. Trace elements accumulation and temporal trends in leaves of urban deciduous trees (Aesculus hippocastanum and Tilia spp.). Ecological Indicators. 2011;11: 824–830. doi: 10.1016/j.ecolind.2010.10.009

87. Kocić K, Spasić T, Urošević MA, Tomašević M. Trees as natural barriers against heavy metal pollution and their role in the protection of cultural heritage. J Cult Herit. 2014;15: 227–233. doi: 10.1016/j.culher.2013.05.001

88. Hovmand MF, Nielsen SP, Johnsen I. Root uptake of lead by Norway spruce grown on 210Pb spiked soils. Environ Pollut. 2009;157: 404–409. doi: 10.1016/j.envpol.2008.09.038 19013698

89. Sjöman H, Busse Nielsen A. Selecting trees for urban paved sites in Scandinavia–A review of information on stress tolerance and its relation to the requirements of tree planners. Urban For Urban Green. 2010;9: 281–293. doi: 10.1016/j.ufug.2010.04.001

90. Cekstere G, Nikodemus O, Osvalde A. Toxic impact of the de-icing material to street greenery in Riga, Latvia. Urban For Urban Green. 2008;7: 207–217. doi: 10.1016/j.ufug.2008.02.004

91. Timonen S, Kauppinen P. Mycorrhizal colonisation patterns of Tilia trees in street, nursery and forest habitats in southern Finland. Urban For Urban Green. 2008;7: 265–276. doi: 10.1016/j.ufug.2008.08.001

92. Acosta JA, Faz A, Martínez-Martínez S, Arocena JM. Grass-induced changes in properties of soils in urban green areas with emphasis on mobility of metals. J Soils Sediments. 2014;14: 819–828. doi: 10.1007/s11368-013-0830-z

93. Borowski J, Latocha P. Selection of trees and shrubs for the urban conditions of Warsaw and cities of central Poland. Rocznik Polskiego Towarzystwa Dendrologicznego. 2006;54: 83–93.

94. Łukasiewicz S, Oleksyn J. Compensating effect of free, unpaved soil surface around trees for their development in urban environment, on the example of Aesculus hippocastanum L. Physiographic research. 2012;61: 155–165.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden