Antifungal effects of a 1,3,4-thiadiazole derivative determined by cytochemical and vibrational spectroscopic studies


Autoři: Barbara Chudzik aff001;  Katarzyna Bonio aff001;  Wojciech Dabrowski aff002;  Daniel Pietrzak aff002;  Andrzej Niewiadomy aff003;  Alina Olender aff005;  Bożena Pawlikowska-Pawlęga aff006;  Mariusz Gagoś aff001
Působiště autorů: Department of Cell Biology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland aff001;  Department of Anaesthesiology and Intensive Therapy, Medical University of Lublin, Lublin, Poland aff002;  Institute of Industrial Organic Chemistry, Warsaw, Poland aff003;  Department of Chemistry, University of Life Sciences in Lublin, Lublin, Poland aff004;  Chair and Department of Medical Microbiology, Medical University of Lublin, Lublin, Poland aff005;  Department of Comparative Anatomy and Anthropology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland aff006
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222775

Souhrn

Compounds belonging to the group of 5-substituted 4-(1,3,4-thiadiazol-2-yl) benzene-1,3-diols exhibit a broad spectrum of biological activity, including antibacterial, antifungal, and anticancer properties. The mechanism of the antifungal activity of compounds from this group has not been described to date. Among the large group of 5-substituted 4-(1,3,4-thiadiazol-2-yl) benzene-1,3-diol derivatives, the compound 4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol, abbreviated as C1, was revealed to be one of the most active agents against pathogenic fungi, simultaneously with the lowest toxicity to human cells. The C1 compound is a potent antifungal agent against different Candida species, including isolates resistant to azoles, and molds, with MIC100 values ranging from 8 to 96 μg/ml. The antifungal activity of the C1 compound involves disruption of the cell wall biogenesis, as evidenced by the inability of cells treated with C1 to maintain their characteristic cell shape, increase in size, form giant cells and flocculate. C1-treated cells were also unable to withstand internal turgor pressure causing protoplast material to leak out, exhibited reduced osmotic resistance and formed buds that were not covered with chitin. Disturbances in the chitin septum in the neck region of budding cells was observed, as well as an uneven distribution of chitin and β(1→3) glucan, and increased sensitivity to substances interacting with wall polymerization. The ATR-FTIR spectral shifts in cell walls extracted from C. albicans cells treated with the C1 compound suggested weakened interactions between the molecules of β(1→3) glucans and β(1→6) glucans, which may be the cause of impaired cell wall integrity. Significant spectral changes in the C1-treated cells were also observed in bands characteristic for chitin. The C1 compound did not affect the ergosterol content in Candida cells. Given the low cytotoxicity of the C1 compound to normal human dermal fibroblasts (NHDF), it is possible to use this compound as a therapeutic agent in the treatment of surface and gastrointestinal tract mycoses.

Klíčová slova:

Antifungals – Candida – Candida albicans – Cell staining – Cell walls – Fungal pathogens – chitin – Glucans


Zdroje

1. Low CY, Rotstein C. Emerging fungal infections in immunocompromised patients. F1000 Med Rep. 2011;3:14. doi: 10.3410/M3-14 21876720; PubMed Central PMCID: PMC3155160.

2. Singh N, Huprikar S, Burdette SD, Morris MI, Blair JE, Wheat LJ, et al. Donor-Derived Fungal Infections in Organ Transplant Recipients: Guidelines of the American Society of Transplantation, Infectious Diseases Community of Practice. American Journal of Transplantation. 2012;12(9):2414–28. doi: 10.1111/j.1600-6143.2012.04100.x WOS:000307945000020. 22694672

3. Huprikar S, Shoham S, Practice AIDC. Emerging Fungal Infections in Solid Organ Transplantation. American Journal of Transplantation. 2013;13:262–71. doi: 10.1111/ajt.12118 WOS:000315907900028. 23465019

4. Castelli MV, Derita MG, Lopez SN. Novel antifungal agents: a patent review (2013-present). Expert Opinion on Therapeutic Patents. 2017;27(4):415–26. doi: 10.1080/13543776.2017.1261113 WOS:000396862600004.

5. Kontoyiannis DP, Lewis RE. Antifungal drug resistance of pathogenic fungi. Lancet. 2002;359(9312):1135–44. doi: 10.1016/S0140-6736(02)08162-X WOS:000174729200030. 11943280

6. Richardson M, Lass-Florl C. Changing epidemiology of systemic fungal infections. Clinical Microbiology and Infection. 2008;14:5–24. doi: 10.1111/j.1469-0691.2008.01978.x WOS:000255264400002. 18430126

7. Pappas PG. Opportunistic Fungi: A View to the Future. American Journal of the Medical Sciences. 2010;340(3):253–7. doi: 10.1097/MAJ.0b013e3181e99c88 WOS:000281672700012. 20823702

8. Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR, et al. Clinical breakpoints for the echinocandins and Candida revisited: Integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resistance Updates. 2011;14(3):164–76. doi: 10.1016/j.drup.2011.01.004 WOS:000292623200003. 21353623

9. Fera MT, La Camera E, De Sarro A. New triazoles and echinocandins: mode of action, in vitro activity and mechanisms of resistance. Expert Review of Anti-Infective Therapy. 2009;7(8):981–98. doi: 10.1586/eri.09.67 WOS:000270772500012. 19803707

10. Day MJ. Fungal Diseases: the Last Frontier? J Comp Pathol. 2016;155(2–3):93–4. doi: 10.1016/j.jcpa.2016.07.001 27476107.

11. Jain AK, Sharma S, Vaidya A, Ravichandran V, Agrawal RK. 1,3,4-Thiadiazole and its Derivatives: A Review on Recent Progress in Biological Activities. Chemical Biology & Drug Design. 2013;81(5):557–76. doi: 10.1111/cbdd.12125 WOS:000318172600002. 23452185

12. Serban G, Stanasel O, Serban E, Bota S. 2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents. Drug Design Development and Therapy. 2018;12:1545–66. doi: 10.2147/Dddt.S155958 WOS:000434031500002. 29910602

13. Matysiak J. Synthesis of 5-substituted 2-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles. Journal of Heterocyclic Chemistry. 2006;43(1):55–8. doi: 10.1002/jhet.5570430108 WOS:000234531100008.

14. Matysiak J, Malinski Z. 2-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole analogues: Antifungal activity in vitro against Candida species. Russian Journal of Bioorganic Chemistry. 2007;33(6):594–601. doi: 10.1134/S1068162007060106 WOS:000251321900010.

15. Matysiak J, Nasulewicz A, Pelczynska M, Switalska M, Jaroszewicz I, Opolski A. Synthesis and antiproliferative activity of some 5-substituted 2-(2,4-dihydroxyphenyl)-1,3,4-thiadiazoles. European Journal of Medicinal Chemistry. 2006;41(4):475–82. doi: 10.1016/j.ejmech.2005.12.007 WOS:000238054100005. 16517026

16. Matysiak J, Skrzypek A, Niewiadomy A. Synthesis and Antifungal Activity of Novel 5-Substituted 4-(1,3,4-Thiadiazol-2-yl) benzene-1,3-Diols. Heteroatom Chemistry. 2010;21(7):533–40. doi: 10.1002/hc.20645 WOS:000284064100011.

17. CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard, 3rd ed. CLSI document M27-A3. Clinical and Laboratory Standards Institute, Wayne, PA. 2008 a.

18. CLSI. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi. Approved standard, 2nd ed. CLSI document M38-A2. Clinical and Laboratory Standards Institute, Wayne, PA 2008 b.

19. Singh K, Matsuyama S, Drazba JA, Almasan A. Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress. Autophagy. 2012;8(2):236–51. doi: 10.4161/auto.8.2.18600 WOS:000302420100009. 22240589

20. Traganos F, Darzynkiewicz Z. Lysosomal Proton Pump Activity—Supravital Cell Staining with Acridine-Orange Differentiates Leukocyte Subpopulations. Methods in Cell Biology, Vol 41. 1994;41:185–94. WOS:A1994BB98R00012. doi: 10.1016/s0091-679x(08)61717-3 7532261

21. Ovalle R, Lim ST, Holder B, Jue CK, Moore CW, Lipke PN. A spheroplast rate assay for determination of cell wall integrity in yeast. Yeast. 1998;14(13):1159–66. doi: 10.1002/(SICI)1097-0061(19980930)14:13<1159::AID-YEA317>3.0.CO;2-3 WOS:000076263800001. 9791887

22. Breivik ONO J.L. Spectrophotometric semi-microdetermination of ergosterol in yeast. Jour Agric And Food Chem 5(5): 360–363. 1957;5(5):360–3.

23. Arthington-Skaggs BA, Jradi H, Desai T, Morrison CJ. Quantitation of ergosterol content: Novel method for determination of fluconazole susceptibility of Candida albicans. Journal of Clinical Microbiology. 1999;37(10):3332–7. WOS:000082644800044. 10488201

24. Pitarch A, Sanchez M, Nombela C, Gil C. Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics. 2002;1(12):967–82. doi: 10.1074/mcp.m200062-mcp200 WOS:000185314000006. 12543933

25. Cardenas G, Cabrera G, Taboada E, Miranda SP. Chitin characterization by SEM, FTIR, XRD, and C-13 cross polarization/mass angle spinning NMR. J Appl Polym Sci. 2004;93(4):1876–85. doi: 10.1002/app.20647 WOS:000222481500050.

26. Novak M, Synytsya A, Gedeon O, Slepicka P, Prochazka V, Synytsya A, et al. Yeast beta(1–3),(1–6)-D-glucan films: Preparation and characterization of some structural and physical properties. Carbohyd Polym. 2012;87(4):2496–504. doi: 10.1016/j.carbpol.2011.11.031 WOS:000299969800018.

27. Negrea P, Caunii A, Sarac I, Butnariu M. The Study of Infrared Spectrum of Chitin and Chitosan Extract as Potential Sources of Biomass. Dig J Nanomater Bios. 2015;10(4):1129–38. WOS:000366264800003.

28. Van de Velde K, Kiekens P. Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state C-13 NMR. Carbohyd Polym. 2004;58(4):409–16. doi: 10.1016/j.carbpol.2004.08.004 WOS:000225542800006.

29. Adt I, Toubas D, Pinon JM, Manfait M, Sockalingum G. FTIR spectroscopy as a potential tool to analyse structural modifications during morphogenesis of Candida albicans. Archives of Microbiology. 2006;185(4):277–85. doi: 10.1007/s00203-006-0094-8 WOS:000236961500005. 16474951

30. Sandula J, Kogan G, Kacurakova M, Machova E. Microbial (1 -> 3)-beta-D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity. Carbohyd Polym. 1999;38(3):247–53. doi: 10.1016/S0144-8617(98)00099-X WOS:000078641700010.

31. Gao YF, Huo XW, Dong L, Sun XJ, Sai H, Wei GB, et al. Fourier transform infrared microspectroscopy monitoring of 5-fluorouracil-induced apoptosis in SW620 colon cancer cells. Molecular Medicine Reports. 2015;11(4):2585–91. doi: 10.3892/mmr.2014.3088 WOS:000351711100030. 25503826

32. Zimkus A, Misiunas A, Chaustova L. Li+ effect on the cell wall of the yeast Saccharomyces cerevisiae as probed by FT-IR spectroscopy. Central European Journal of Biology. 2013;8(8):724–9. doi: 10.2478/s11535-013-0186-1 WOS:000319289500002.

33. Szeghalmi A, Kaminskyj S, Gough KM. A synchrotron FTIR microspectroscopy investigation of fungal hyphae grown under optimal and stressed conditions. Analytical and Bioanalytical Chemistry. 2007;387(5):1779–89. doi: 10.1007/s00216-006-0850-2 WOS:000244335000023. 17106657

34. Galichet A, Sockalingum GD, Belarbi A, Manfait M. FTIR spectroscopic analysis of Saccharomyces cerevisiae cell walls: study of an anomalous strain exhibiting a pink-colored cell phenotype. Fems Microbiology Letters. 2001;197(2):179–86. doi: 10.1111/j.1574-6968.2001.tb10601.x WOS:000168396300008. 11313132

35. Hernandez-Chavez MJ, Franco B, Clavijo-Giraldo DM, Hernandez NV, Estrada-Mata E, Mora-Montes HM. Role of protein phosphomannosylation in the Candida tropicalis-macrophage interaction. Fems Yeast Res. 2018;18(5). ARTN foy053 doi: 10.1093/femsyr/foy053 WOS:000446190600012. 29718196

36. Krizkova L, Durackova Z, Sandula J, Sasinkova V, Krajcovic J. Antioxidative and antimutagenic activity of yeast cell wall mannans in vitro. Mutat Res-Gen Tox En. 2001;497(1–2):213–22. doi: 10.1016/S1383-5718(01)00257-1 WOS:000170960300023.

37. Okada H, Ohnuki S, Roncero C, Konopka JB, Ohya Y. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data. Molecular Biology of the Cell. 2014;25(2):222–33. doi: 10.1091/mbc.E13-07-0396 WOS:000330022900002. 24258022

38. Piotrowski JS, Okada H, Lu F, Li SC, Hinchman L, Ranjan A, et al. Plant-derived antifungal agent poacic acid targets beta-1,3-glucan. Proc Natl Acad Sci U S A. 2015;112(12):E1490–7. doi: 10.1073/pnas.1410400112 25775513; PubMed Central PMCID: PMC4378397.

39. Cassone A, Mason RE, Kerridge D. Lysis of Growing Yeast-Form Cells of Candida-Albicans by Echinocandin—a Cytological Study. Sabouraudia-Journal of Medical and Veterinary Mycology. 1981;19(2):97–110. WOS:A1981LU45000002.

40. Gil-Bona A, Reales-Calderon JA, Parra-Giraldo CM, Martinez-Lopez R, Monteoliva L, Gil C. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host-Cell Interaction. Frontiers in Microbiology. 2016;7. ARTN 64 doi: 10.3389/fmicb.2016.00007 WOS:000369113100001.

41. Martinez-Lopez R, Monteoliva L, Diez-Orejas R, Nombela C, Gil C. The GPI-anchored protein CaEcm33p is required for cell wall integrity, morphogenesis and virulence in Candida albicans. Microbiol-Sgm. 2004;150:3341–54. doi: 10.1099/mic.0.27320–0 WOS:000224695800027.

42. Kluczyk D, Matwijczuk A, Gorecki A, Karpinska MM, Szymanek M, Niewiadomy A, et al. Molecular Organization of Dipalmitoylphosphatidylcholine Bilayers Containing Bioactive Compounds 4-(5-Heptyl-1,3,4-thiadiazol-2-yl)Benzene-1,3-diol and 4-(5-Methyl-1,3,4-thiadiazol-2-yl) Benzene-1,3-diols. Journal of Physical Chemistry B. 2016;120(47):12047–63. doi: 10.1021/acs.jpcb.6b09371 WOS:000389161200003. 27798830

43. Hurtado-Guerrero R, Schuttelkopf AW, Mouyna I, Ibrahim AF, Shepherd S, Fontaine T, et al. Molecular mechanisms of yeast cell wall glucan remodeling. J Biol Chem. 2009;284(13):8461–9. doi: 10.1074/jbc.M807990200 19097997; PubMed Central PMCID: PMC2659204.

44. Aimanianda V, Clavaud C, Simenel C, Fontaine T, Delepierre M, Latge JP. Cell Wall beta-(1,6)-Glucan of Saccharomyces cerevisiae STRUCTURAL CHARACTERIZATION AND IN SITU SYNTHESIS. Journal of Biological Chemistry. 2009;284(20):13401–12. doi: 10.1074/jbc.M807667200 WOS:000265877300016. 19279004

45. Lesage G, Bussey H. Cell wall assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews. 2006;70(2):317–+. doi: 10.1128/MMBR.00038-05 WOS:000238321500003. 16760306

46. Arroyo ECJ, Arroyo J. How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nature Reviews Microbiology. 2013;11(9):648–55. doi: 10.1038/nrmicro3090 WOS:000323205500013. 23949603

47. Klis FM, Mol P, Hellingwerf K, Brul S. Dynamics of cell wall structure in Saccharomyces cerevisiae. Fems Microbiology Reviews. 2002;26(3):239–56. Pii S168-6445(02)00087-6 doi: 10.1111/j.1574-6976.2002.tb00613.x WOS:000177621600002. 12165426

48. Gow NAR, Yadav B. Microbe Profile: Candida albicans: a shape-changing, opportunistic pathogenic fungus of humans. Microbiol-Sgm. 2017;163(8):1145–7. doi: 10.1099/mic.0.000499 WOS:000409533800002. 28809155

49. Netea MG, Joosten LAB, van der Meer JWM, Kullberg BJ, van de Veerdonk FL. Immune defence against Candida fungal infections. Nature Reviews Immunology. 2015;15(10):630–42. doi: 10.1038/nri3897 WOS:000361912600009. 26388329

50. Martinez-Lopez R, Park H, Myers CL, Gil C, Filler SG. Candida albicans Ecm33p is important for normal cell wall architecture and interactions with host cells. Eukaryot Cell. 2006;5(1):140–7. doi: 10.1128/EC.5.1.140-147.2006 WOS:000234725100012. 16400176

51. Noble SM, Gianetti BA, Witchley JN. Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol. 2017;15(2):96–108. doi: 10.1038/nrmicro.2016.157 27867199; PubMed Central PMCID: PMC5957277.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden