Influence of the cultivation medium and pH on the pigmentation of Trichophyton rubrum


Autoři: Oliver Blechert aff001;  Hailin Zheng aff001;  Xiaohui Zang aff001;  Qiong Wang aff001;  Weida Liu aff001
Působiště autorů: Department of Medical Mycology, Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, Jiangsu, People’s Republic of China aff001;  Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, People's Republic of China aff002;  Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222333

Souhrn

Trichophyton rubrum is a human pathogenic fungus. As a dermatophyte it causes athlete's foot, fungal infection of nails, jock itch and ringworm. The pigmentation of T. rubrum is variable and can range from white or yellow to wine-red. We demonstrate that the pigmentation is strongly influenced by pH. Under alkaline conditions, T. rubrum has a red pigmentation, whereas at acid conditions, T. rubrum has a yellow pigmentation. Moreover, the color change immediately from yellow to red by adding NaOH and reverse immediately from red to yellow by adding HCl. We suggest that the chemical compound Xanthomegnin is responsible for red as well for yellow pigmentation in T. rubrum. To figure out, why T. rubrum has red pigmentation on Trichophyton medium, adjust to alkaline, but not on Synthetic-Complete medium, also adjusted to alkaline, we measure the pH of liquid media, adjusted to pH 3.5, 6 and 8, over a period of four weeks. The pH of both cultivation media changes significantly, with a maximum of five pH levels. Whereas the Trichophyton medium, initially adjusted to pH 8, stays alkaline, the pH of the Synthetic-Complete medium drops to acid conditions. The acidification of the SC medium and the alkalization of the Trichophyton medium explains the different pigment color of the T. rubrum colonies.

Klíčová slova:

Biology and life sciences – Organisms – Eukaryota – Fungi – Microbiology – Medical microbiology – Microbial pathogens – Fungal pathogens – Mycology – Plant science – Plant pathology – Plant pathogens – Plant fungal pathogens – Agriculture – Fungiculture – Physical sciences – Chemistry – Chemical compounds – Acids – Materials science – Materials – Pigments – Medicine and health sciences – Pathology and laboratory medicine – Pathogens – Infectious diseases – Fungal diseases


Zdroje

1. Saunte DML, Piraccini BM, Sergeev AY, Prohić A, Sigurgeirsson B, Rodríguez‐Cerdeira Cet al. A survey among dermatologists: diagnostics of superficial fungal infections–what is used and what is needed to initiate therapy and assess efficacy? J Eur Acad Dermatol Venereol. 2019 33:421–427. doi: 10.1111/jdv.15361 30468532

2. Ghannoum M, Mukherjee P, Isham N, Markinson B, Del Rosso J, Leal L. Examining the importance of laboratory and diagnostic testing when treating and diagnosing onychomycosis. Int J Dermatol. 2018 57:131–138. doi: 10.1111/ijd.13690 28653769

3. Kidd S, Halliday C, Alexiou H, Ellis D. Descriptions of medical fungi. 2016. Third edition. https://mycology.adelaide.edu.au/.

4. Baxter M. The stimulation of pigment production by Trichophyton rubrum on a new medium, Sabouraudia: Journal of Medical and Veterinary Mycology, 1964 3: 72–80.

5. Guoling Y, Xiaohong Y, Lin J, Jin L, An L. A Study on Stability of Phenotype and Genotype of Trichophyton rubrum. Mycopathologia. 2006 161:205–12. doi: 10.1007/s11046-005-0226-8 16552482

6. Zhan P, Dukik K, Li D, Sun J, Stielow JB, Gerrits van den Ende Bet al. Phylogeny of dermatophytes with genomic character evaluation of clinically distinct Trichophyton rubrum and T. violaceum. Stud Mycol. 2018 89: 153–175. doi: 10.1016/j.simyco.2018.02.004 29910521

7. Wirth JC, O'Brian PJ, Schmitt FL, Sohler A. The isolation in crystalline form of some of the pigments of Trichophyton rubrum. J Invest Dermatol. 1957 29: 47–53. doi: 10.1038/jid.1957.71 13475944

8. Blank F, Day WC, Just G. Metabolites of pathogenic fungi. II. The isolation of xanthomegnin from Trichophyton megnini Blanchard 1896. J Invest Dermatol. 1963 40: 133–7. 13971503

9. Wirth JC, Beesley TE, Anand SR. The isolation of xanthomegnin from several strains of the dermatophyte, Trichophyton rubrum. Phytochemistry 1965 4: 505–509.

10. Blank F, Ng AS, Just G. Metabolites of pathogenic fungi: V. Isolation and tentative structures of vioxanthin and viopurpurin, two colored metabolites of Trichophyton violaceum. Canadian Journal of Chemistry 1966 44: 2873–2879.

11. Fürtges L, Obermaier S, Thiele W, Foegen S, Müller M. Diversity in Fungal Intermolecular Phenol Coupling of Polyketides: Regioselective Laccase-Based Systems. Chembiochem. 2019 20: 1928–1932. doi: 10.1002/cbic.201900041 30868712

12. Robbers JE, Hong S, Tuite J, Carlton WW. Production of xanthomegnin and viomellein by species of Aspergillus correlated with mycotoxicosis produced in mice. Appl Environ Microbiol. 1978 36: 819–23. 736540

13. Kamiya K, Arai M, Setiawan A, Kobayashi M. Anti-dormant Mycobacterial Activity of Viomellein and Xanthomegnin, Naphthoquinone Dimers Produced by Marine- derived Aspergillus sp. Nat Prod Commun. 2017 12: 579–581. 30520600

14. Stack ME, Eppley RM, Dreifuss PA, Pohland AE. Isolation and identification of xanthomegnin, viomellein, rubrosulphin, and viopurpurin as metabolites of Penicillium viridicatum. Appl Environ Microbiol. 1977 33: 351–5. 848956

15. Alvi KA, Baker DD, Stienecker V, Hosken M, Nair BG. Identification of inhibitors of inducible nitric oxide synthase from microbial extract. The Journal of Antibiotics 2000 53: 496–501. 10908113

16. Kawai K, Akita T, Nishibe S, Nozawa Y, Ogihara Y, Ito Y. Biochemical studies of pigments from a pathogenic fungus Microsporum cookei. III. Comparison of the effects of xanthomegnin and O-methylxanthomegnin on the oxidative phosphorylation of rat liver mitochondria. J Biochem. 1976 79: 145–52. doi: 10.1093/oxfordjournals.jbchem.a131041 939756

17. Ito Y, Kawai K, Nozawa Y. Biochemical studies of pigments from the pathogenic fungus, Microsporum cookei. J Biochem. 1973 74: 805–10. doi: 10.1093/oxfordjournals.jbchem.a130306 4271697

18. Kawai K, Cowger ML. 1982. Spectrophotometric study of the interaction of xanthomegnin with serum albumin. Res Commun Chem Pathol Pharmacol 35: 499–513. 7079576

19. Teixeira TS, Freitas RF, Abrahão O Jr, Devienne KF, de Souza LR, Blaber SI et al. Biological evaluation and docking studies of natural isocoumarins as inhibitors for human kallikrein 5 and 7. Bioorg Med Chem Lett. 2011 20: 6112–5.

20. Yang XY, Cai SX, Zhang WJ, Tang XL, Shin HY, Lee JYet al. Semi-vioxanthin isolated from marine-derived fungus regulates tumor necrosis factor-alpha, cluster of differentiation (CD) 80, CD86, and major histocompatibility complex class II expression in RAW264.7 cells via nuclear factor-kappaB and mitogen-activated protein kinase signaling pathways. Biol Pharm Bull. 2008 12:2228–33.

21. Silveira HC, Gras DE, Cazzaniga RA, Sanches PR, Rossi A, Martinez-Rossi NM. Transcriptional profiling reveals genes in the human pathogen Trichophyton rubrum that are expressed in response to pH signaling. Microb Pathog. 2010 48: 91–6. doi: 10.1016/j.micpath.2009.10.006 19874884

22. Martinez-Rossi NM, Peres NT, Rossi A. Pathogenesis of Dermatophytosis: Sensing the Host Tissue. Mycopathologia. 2017 182: 215–227. doi: 10.1007/s11046-016-0057-9 27590362

23. Asahi M, Lindquist R, Fukuyama K, Apodaca G, Epstein WL, McKerrow JH. Purification and characterization of major extracellular proteinases from Trichophyton rubrum. Biochem J. 1985 232: 139–144. doi: 10.1042/bj2320139 3910025

24. Sharma A, Chandra S, Sharma M. Difference in keratinase activity of dermatophytes at different environmental conditions is an attribute of adaptation to parasitism. Mycoses. 2012 55:410–5. doi: 10.1111/j.1439-0507.2011.02133.x 22032519

25. Nüsse O. Biochemistry of the Phagosome: The Challenge to Study a Transient Organelle. ScientificWorldJournal. 2011 11: 2364–2381. doi: 10.1100/2011/741046 22194668

26. Martinez-Rossi NM, Persinoti GF, Peres NT, Rossi A. Role of pH in the pathogenesis of dermatophytoses. Mycoses. 2012 55: 381–7. doi: 10.1111/j.1439-0507.2011.02162.x 22211778

27. Rascle C, Dieryckx C, Dupuy JW, Muszkieta L, Souibgui E, Droux M et al. The pH regulator PacC: a host-dependent virulence factor in Botrytis cinerea. Environmental Microbiology Reports 2018 10: 555–568. doi: 10.1111/1758-2229.12663 30066486

28. Vylkova S. Environmental pH modulation by pathogenic fungi as a strategy to conquer the host. PLoS Pathog 2017 13: e1006149. doi: 10.1371/journal.ppat.1006149 28231317

29. Miyara I, Shafran H, Davidzon M, Sherman A, Prusky D. pH Regulation of ammonia secretion by Colletotrichum gloeosporioides and its effect on appressorium formation and pathogenicity. Mol Plant Microbe Interact. 2010 23: 304–16. doi: 10.1094/MPMI-23-3-0304 20121452

30. Miller SM, Magasanik B. Role of the complex upstream region of the GDH2 gene in nitrogen regulation of the NAD-linked glutamate dehydrogenase in Saccharomyces cerevisiae. Mol Cell Biol 1991 11:6229–47. doi: 10.1128/mcb.11.12.6229 1682801

31. Danhof HA, Vylkova S, Vesely EM, Ford AE, Gonzalez-Garay M, Lorenz MC. Robust Extracellular pH Modulation by Candida albicans during Growth in Carboxylic Acids. MBio. 2016 7: 01646–16.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden