#PAGE_PARAMS# #ADS_HEAD_SCRIPTS# #MICRODATA#

Validity of six consumer-level activity monitors for measuring steps in patients with chronic heart failure


Autoři: Tomas Vetrovsky aff001;  Michal Siranec aff002;  Jitka Marencakova aff001;  James J. Tufano aff001;  Vaclav Capek aff003;  Vaclav Bunc aff001;  prof. MUDr. Jan Bělohlávek, Ph.D. aff002
Působiště autorů: Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic aff001;  2nd Department of Medicine – Department of Cardiovascular Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic aff002;  Second Faculty of Medicine, Charles University, Prague, Czech Republic aff003
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222569

Souhrn

Introduction

Although numerous activity trackers have been validated in healthy populations, validation is lacking in chronic heart failure patients who normally walk at a slower pace, making it difficult for researchers and clinicians to implement activity monitors during physical activity interventions.

Methods

Six consumer-level activity monitors were validated in a 3-day field study in patients with chronic heart failure and healthy individuals under free living conditions. Furthermore, the same devices were evaluated in a lab-based study during treadmill walking at speeds of 2.4, 3.0, 3.6, and 4.2 km·h-1. Concordance correlation coefficients (CCC) were used to evaluate the agreement between the activity monitors and the criterion, and mean absolute percentage errors (MAPE) were calculated to assess differences between each device and the criterion (MAPE <10% was considered as a threshold for validity).

Results

In the field study of healthy individuals, all but one of the activity monitors showed a substantial correlation (CCC ≥0.95) with the criterion device and MAPE <10%. In patients with heart failure, the correlation of only two activity monitors (Garmin vívofit 3 and Withings Go) was classified as at least moderate (CCC ≥0.90) and none of the devices had MAPE <10%. In the lab-based study at speeds 4.2 and 3.6 km·h-1, all activity monitors showed substantial to almost perfect correlations (CCC ≥0.95) with the criterion and MAPE in the range 1%-3%. However, at slower speeds of 3.0 and 2.4 km·h-1, the accuracy of all devices substantially deteriorated: their correlation with the criterion decreased below 90% and their MAPE increased to 4–8% and 10–45%, respectively.

Conclusions

Even though none of the tested activity monitors fall within arbitrary thresholds for validity, most of them perform reasonably well enough to be useful tools that clinicians can use to simply motivate chronic heart failure patients to walk more.

Klíčová slova:

Biology and life sciences – Physiology – Biological locomotion – Walking – Anatomy – Musculoskeletal system – Body limbs – Anthropometry – Medicine and health sciences – Cardiology – Heart failure – Ejection fraction – Arms – Engineering and technology – Equipment – Measurement equipment – Electronics – Accelerometers


Zdroje

1. Piepoli MF, Conraads V, Corrà U, Dickstein K, Francis DP, Jaarsma T, et al. Exercise training in heart failure: from theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Heart Fail. 2011 Apr;13(4):347–57. doi: 10.1093/eurjhf/hfr017 21436360

2. Long L, Mordi IR, Bridges C, Sagar VA, Davies EJ, Coats AJ, et al. Exercise-based cardiac rehabilitation for adults with heart failure. Cochrane Heart Group, editor. Cochrane Database Syst Rev. 2019 Jan 29;8(5):860–184.

3. Nolte K, Herrmann-Lingen C, Wachter R, Gelbrich G, Düngen H-D, Duvinage A, et al. Effects of exercise training on different quality of life dimensions in heart failure with preserved ejection fraction: the Ex-DHF-P trial. Eur J Prev Cardiol. 2015 May;22(5):582–93. doi: 10.1177/2047487314526071 24627449

4. Conraads VM, Deaton C, Piotrowicz E, Santaularia N, Tierney S, Piepoli MF, et al. Adherence of heart failure patients to exercise: barriers and possible solutions: a position statement of the Study Group on Exercise Training in Heart Failure of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2012 May;14(5):451–8. doi: 10.1093/eurjhf/hfs048 22499542

5. Vetrovsky T, Siranec M, Parenica J, Griva M, Stastny J, Precek J, et al. Effect of a 6-month pedometer-based walking intervention on functional capacity in patients with chronic heart failure with reduced (HFrEF) and with preserved (HFpEF) ejection fraction: study protocol for two multicenter randomized controlled trials. J Transl Med. 2017 Jul 3;15(1):153–62. doi: 10.1186/s12967-017-1257-x 28673328

6. Bravata DM, Smith-Spangler C, Sundaram V, Gienger AL, Lin N, Lewis R, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007 Nov 21;298(19):2296–304. doi: 10.1001/jama.298.19.2296 18029834

7. Harris T, Kerry SM, Limb ES, Victor CR, Iliffe S, Ussher M, et al. Effect of a primary care walking intervention with and without nurse support on physical activity levels in 45- to 75-year-olds: the pedometer and consultation evaluation (PACE-UP) cluster randomised clinical trial. PLoS Med. 2017 Jan;14(1):e1002210. doi: 10.1371/journal.pmed.1002210 28045890

8. Vetrovsky T, Čupka J, Dudek M, Kuthanova B, Vetrovska K, Capek V, et al. A pedometer-based walking intervention with and without email counseling in general practice: a pilot randomized controlled trial. BMC Public Health. 2018 May 13;18(1):635–47. doi: 10.1186/s12889-018-5520-8 29769107

9. Lee JA, Williams SM, Brown DD, Laurson KR. Concurrent validation of the Actigraph gt3x+, Polar Active accelerometer, Omron HJ-720 and Yamax Digiwalker SW-701 pedometer step counts in lab-based and free-living settings. J Sports Sci. 2014 Dec 20;33(10):991–1000. doi: 10.1080/02640414.2014.981848 25517396

10. Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015 Dec 18;12(1):e192.

11. Šimůnek A, Dygrýn J, Gába A, Jakubec L, Stelzer J, Chmelík F. Validity of Garmin Vívofit and polar loop for measuring daily step counts in free-living conditions in adults. Acta Gymnica. 2016 Jan 1;46(3):129–35.

12. Panizzolo FA, Maiorana AJ, Naylor LH, Dembo L, Lloyd DG, Green DJ, et al. Gait analysis in chronic heart failure: The calf as a locus of impaired walking capacity. J Biomech. 2014 Nov 28;47(15):3719–25. doi: 10.1016/j.jbiomech.2014.09.015 25307437

13. Fokkema T, Kooiman TJM, Krijnen WP, van der Schans CP, De Groot M. Reliability and validity of ten consumer activity trackers depend on walking speed. Med Sci Sports Exerc. 2017 Apr;49(4):793–800. doi: 10.1249/MSS.0000000000001146 28319983

14. Crouter SE, Schneider PL, Karabulut M, Bassett DR. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc. 2003 Aug;35(8):1455–60. doi: 10.1249/01.MSS.0000078932.61440.A2 12900704

15. van Remoortel H, Giavedoni S, Raste Y, Burtin C, Louvaris Z, Gimeno-Santos E, et al. Validity of activity monitors in health and chronic disease: a systematic review. Int J Behav Nutr Phys Act. 2012;9(1):84.

16. Thorup CB, Andreasen JJ, Sørensen EE, Grønkjær M, Dinesen BI, Hansen J. Accuracy of a step counter during treadmill and daily life walking by healthy adults and patients with cardiac disease. BMJ Open. 2017 Mar 30;7(3):e011742–12. doi: 10.1136/bmjopen-2016-011742 28363918

17. Moy ML, Janney AW, Nguyen HQ, Matthess KR, Cohen M, Garshick E, et al. Use of pedometer and Internet-mediated walking program in patients with chronic obstructive pulmonary disease. J Rehabil Res Dev. 2010;47(5):485–96. 20803392

18. Jehn M, Schmidt-Trucksäss A, Schuster T, Hanssen H, Halle M, Köhler F. Pedometer accuracy in patients with chronic heart failure. Int J Sports Med. 2010 Mar;31(3):186–91. doi: 10.1055/s-0029-1243641 20166006

19. Tudor-Locke C, Barreira TV, Schuna JM. Comparison of step outputs for waist and wrist accelerometer attachment sites. Med Sci Sports Exerc. 2014 Aug 13;47(4):1–842.

20. Treacy D, Hassett L, Schurr K, Chagpar S, Paul SS, Sherrington C. Validity of different activity monitors to count steps in an inpatient rehabilitation setting. Phys Ther. 2017 May 1;97(5):581–8. doi: 10.1093/ptj/pzx010 28339904

21. Alshurafa N, Eastwood J-A, Nyamathi S, Xu W, Liu JJ, Sarrafzadeh M. Battery optimization in smartphones for remote health monitoring systems to enhance user adherence. Proceedings of the International Conference on Pervasive Technologies Related to Assistive Environments. New York, NY, USA: ACM Press; 2014. https://muyangamigo.github.io/HAbitsLabWeb/assets/papers/29.pdf, accessed on 29 July 2019.

22. Henriksen A, Haugen Mikalsen M, Woldaregay AZ, Muzny M, Hartvigsen G, Hopstock LA, et al. Using fitness trackers and smartwatches to measure physical activity in research: analysis of consumer wrist-worn wearables. J Med Internet Res. 2018;20(3):e110–9. doi: 10.2196/jmir.9157 29567635

23. Ferguson T, Rowlands AV, Olds T, Maher C. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study. Int J Behav Nutr Phys Act. 2015;12(1):42.

24. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur J Heart Fail. 2016 May 20;18(8):891–975. doi: 10.1002/ejhf.592 27207191

25. Sasaki JE, John D, Freedson PS. Validation and comparison of ActiGraph activity monitors. J Sci Med Sport. 2011 Sep;14(5):411–6. doi: 10.1016/j.jsams.2011.04.003 21616714

26. John D, Freedson P. ActiGraph and Actical physical activity monitors: a peek under the hood. Med Sci Sports Exerc. 2012 Jan;44(1 Suppl 1):S86–9. doi: 10.1249/MSS.0b013e3182399f5e 22157779

27. Shoemaker MJ, Cartwright K, Hanson K, Serba D, Dickinson MG, Kowalk A. Concurrent validity of daily activity data from Medtronic ICD/CRT devices and the Actigraph GT3X triaxial accelerometer. Cardiopulm Phys Ther J. 2017 Jan;28(1):3–11.

28. An H-S, Jones GC, Kang S-K, Welk GJ, Lee J-M. How valid are wearable physical activity trackers for measuring steps? Eur J Sport Sc. 2016 Nov 14;17(3):360–8.

29. Figueiredo P, Ribeiro PAB, Bona RL, Peyré-Tartaruga LA, Ribeiro JP. Ventilatory determinants of self-selected walking speed in chronic heart failure. Med Sci Sports Exerc. 2013 Mar;45(3):415–9. doi: 10.1249/MSS.0b013e318277968f 23059867

30. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, et al. 2011 Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011 Aug;43(8):1575–81. doi: 10.1249/MSS.0b013e31821ece12 21681120

31. Lin LI-K. A Concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989;45(1):255. 2720055

32. McBride GB. A proposal for strength-of-agreement criteria for Lin’s concordance correlation coefficient. NIWA Client Report: HAM2005-062; National Institute of Water & Atmospheric Research: Hamilton, New Zeeland, May 2005. http://www.medcalc.org/download/pdf/McBride2005.pdf, accessed on 29 July 2019.

33. DeShaw KJ, Ellingson L, Bai Y, Lansing J, Perez M, Welk G. Methods for activity monitor validation studies: an example with the Fitbit Charge. J Meas Phys Behav. 2018 Sep;1(3):130–5.

34. Welk GJ, McClain J, Ainsworth BE. Protocols for evaluating equivalency of accelerometry-based activity monitors. Med Sci Sports Exerc. 2012 Jan;44(1 Suppl 1):S39–49. doi: 10.1249/MSS.0b013e3182399d8f 22157773

35. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016 Jun;15(2):155–63. doi: 10.1016/j.jcm.2016.02.012 27330520

36. Boudreaux BD, Hebert EP, Hollander DB, Williams BM, Cormier CL, Naquin MR, et al. Validity of wearable activity monitors during cycling and resistance exercise. Med Sci Sports Exerc. 2018 Mar;50(3):624–33. doi: 10.1249/MSS.0000000000001471 29189666

37. Ehrler F, Weber C, Lovis C. Influence of pedometer position on pedometer accuracy at various walking speeds: a comparative study. J Med Internet Res. 2016;18(10):e268–10. doi: 10.2196/jmir.5916 27713114

38. Chen M-D, Kuo C-C, Pellegrini CA, Hsu M-J. Accuracy of wristband activity monitors during ambulation and activities. Med Sci Sports Exerc. 2016 Oct;48(10):1942–9. doi: 10.1249/MSS.0000000000000984 27183123

39. Adamakis M. Preliminary validation study of consumer-level activity monitors and mobile applications for step counting under free living conditions. J Mob Technol Med. 2017 Apr;6(1):26–33.

40. Figueroa IA, Lucio ND, Gamez JL, Salazar VE, Funk MD. Validity of daily physical activity measurements of Fitbit Charge 2. Int J Exerc Sci. 2018;2(10):27.

41. Toth LP, Park S, Pittman WL, Sarisaltik D, Hibbing PR, Morton AL, et al. Validity of activity tracker step counts during walking, running, and activities of daily living. Transl J Am Coll Sports Med. 2018 Apr 1;3(7):52.

42. Šimůnek A, Dygrýn J, Jakubec L, Neuls F, Frömel K, Welk GJ. Validity of Garmin vívofit 1 and Garmin vívofit 3 for school-based physical activity monitoring. Pediatr Exerc Sci. 2019;31(1):130–6. doi: 10.1123/pes.2018-0019 30304974

43. Paul SS, Tiedemann A, Hassett LM, Ramsay E, Kirkham C, Chagpar S, et al. Validity of the Fitbit activity tracker for measuring steps in community-dwelling older adults. BMJ Open Sport Exerc Med. 2015;1(1):e000013. doi: 10.1136/bmjsem-2015-000013 27900119

44. John D, Morton A, Arguello D, Lyden K, Bassett D. “What is a step?” differences in how a step is detected among three popular activity monitors that have impacted physical activity research. Sensors (Basel). 2018 Apr;18(4):1206–15.

45. Hoodless DJ, Stainer K, Savic N, Batin P, Hawkins M, Cowley AJ. Reduced customary activity in chronic heart failure: assessment with a new shoe-mounted pedometer. Int J Cardiol. 1994 Jan;43(1):39–42. doi: 10.1016/0167-5273(94)90088-4 8175217

46. Walsh JT, Charlesworth A, Andrews R, Hawkins M, Cowley AJ. Relation of daily activity levels in patients with chronic heart failure to long-term prognosis. Am J Cardiol. 1997 May 15;79(10):1364–9. doi: 10.1016/s0002-9149(97)00141-0 9165159


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden
Nejčtenější v tomto čísle
Kurzy

Zvyšte si kvalifikaci online z pohodlí domova

Svět praktické medicíny 1/2024 (znalostní test z časopisu)
nový kurz

Koncepce osteologické péče pro gynekology a praktické lékaře
Autoři: MUDr. František Šenk

Sekvenční léčba schizofrenie
Autoři: MUDr. Jana Hořínková

Hypertenze a hypercholesterolémie – synergický efekt léčby
Autoři: prof. MUDr. Hana Rosolová, DrSc.

Význam metforminu pro „udržitelnou“ terapii diabetu
Autoři: prof. MUDr. Milan Kvapil, CSc., MBA

Všechny kurzy
Kurzy Podcasty Doporučená témata Časopisy
Přihlášení
Zapomenuté heslo

Zadejte e-mailovou adresu, se kterou jste vytvářel(a) účet, budou Vám na ni zaslány informace k nastavení nového hesla.

Přihlášení

Nemáte účet?  Registrujte se

#ADS_BOTTOM_SCRIPTS#