Graviola (Annona muricata) attenuates behavioural alterations and testicular oxidative stress induced by streptozotocin in diabetic rats


Autoři: Abdel-wahab A. Alsenosy aff001;  Ali H. El-Far aff001;  Kadry M. Sadek aff001;  Safinaz A. Ibrahim aff002;  Mustafa S. Atta aff003;  Ahmed Sayed-Ahmed aff004;  Soad K. Al Jaouni aff005;  Shaker A. Mousa aff006
Působiště autorů: Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt aff001;  Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt aff002;  Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt aff003;  Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Menoufia University, Menoufia, Egypt aff004;  Hematology/Pediatric Oncology, King Abdulaziz University Hospital and Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia aff005;  Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States of America aff006
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222410

Souhrn

Oxidative stresses intensify the progression of diabetes-related behavioural changes and testicular injuries. Graviola (Annona muricata), a small tree of the Annonaceae family, has been investigated for its protective effects against diabetic complications, oxidative stress, and neuropathies. This study was planned to investigate the effects of graviola on behavioural alterations and testicular oxidative status of streptozotocin (STZ; 65 mg/kg)-induced diabetic rats. Forty adult male Wistar rats were equally allocated into four groups: control (received normal saline 8 ml/kg orally once daily), diabetic (received normal saline orally once daily), graviola (GR; received 100 mg/kg/day; orally once daily), and diabetic with graviola (Diabetic+GR; received 100 mg/kg/day; once daily). Behavioural functions were assessed using standard behavioural paradigms. Also, oxidative statuses of testis were evaluated. Results of behavioural observations showed that diabetes induced depression-like behaviours, reduction of exploratory and locomotor activities, decreased memory performance, and increased stress-linked behaviours. These variations in diabetic rats were happened due to oxidative stress. Interestingly, treatment of diabetic rats with graviola for four weeks alleviated all behavioural changes due to diabetes. Also, rats in graviola-treated groups had greater testicular testosterone and estradiol levels compared with diabetic rats due to significant rise in testicular acetyl-CoA acetyltransferase 2 expression. In the same context, graviola enhanced the antioxidant status of testicular tissues by significantly restoring the testicular glutathione and total superoxide dismutase that fell during diabetes. In addition, Graviola significantly decreased the expression of apoptotic (Bax) and inflammatory (interleukin-1β) testicular genes. In conclusion, these data propose that both the hypoglycemic and antioxidative potential of graviola are possible mechanisms that improve behavioural alterations and protect testis in diabetic animals. Concomitantly, further clinical studies in human are required to validate the current study.

Klíčová slova:

Medicine and health sciences – Endocrinology – Endocrine disorders – Metabolic disorders – Research and analysis methods – Animal studies – Experimental organism systems – Model organisms – Animal models – Biology and life sciences – Organisms – Eukaryota – Animals – Vertebrates – Amniotes – Mammals – Rodents – Rats – Biochemistry – Antioxidants – Hormones – Androgens – Testosterone – Lipid hormones – estradiol – Genetics – Gene expression – Cell biology – Oxidative stress – Physical sciences – Chemistry – Chemical compounds – Organic compounds – Carbohydrates – Monosaccharides – Glucose – Organic chemistry


Zdroje

1. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93: 137–188. doi: 10.1152/physrev.00045.2011 23303908

2. Baluchnejadmojarad T, Kiasalari Z, Afshin-Majd S, Ghasemi Z, Roghani M. S-allyl cysteine ameliorates cognitive deficits in streptozotocin-diabetic rats via suppression of oxidative stress, inflammation, and acetylcholinesterase. Eur J Pharmacol. 2017;794: 69–76. doi: 10.1016/j.ejphar.2016.11.033 27887948

3. Wang C-F, Li D-Q, Xue H-Y, Hu B. Oral supplementation of catalpol ameliorates diabetic encephalopathy in rats. Brain Res. 2010;1307: 158–165. doi: 10.1016/j.brainres.2009.10.034 19852947

4. Jangra A, Datusalia AK, Khandwe S, Sharma SS. Amelioration of diabetes-induced neurobehavioral and neurochemical changes by melatonin and nicotinamide: Implication of oxidative stress–PARP pathway. Pharmacol Biochem Behav. 2013;114–115: 43–51. doi: 10.1016/j.pbb.2013.10.021 24201044

5. Barnham KJ, Masters CL, Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov. 2004;3: 205–214. doi: 10.1038/nrd1330 15031734

6. Ceriello A. New insights on oxidative stress and diabetic complications may lead to a “causal” antioxidant therapy. Diabetes Care. 2003;26: 1589–1596. doi: 10.2337/diacare.26.5.1589 12716823

7. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39: 44–84. doi: 10.1016/j.biocel.2006.07.001 16978905

8. Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006;18: 325–332. doi: 10.1097/01.gco.0000193003.58158.4e 16735834

9. Salmasi AH, Beheshtian A, Payabvash S, Demehri S, Ebrahimkhani MR, Karimzadegan M, et al. Effect of morphine on ischemia-reperfusion injury: Experimental study in testicular torsion rat model. Urology. 2005;66: 1338–1342. doi: 10.1016/j.urology.2005.06.101 16360480

10. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14: 727–733. Available: http://www.ncbi.nlm.nih.gov/pubmed/17579989 17579989

11. Anim J, Omu EA. Antioxidants attenuates the effects of insulin dependent diabetes mellitus on sperm quality. Bioenerg Open Access. 2014;03. doi: 10.4172/2167-7662.1000113

12. Choudhury H, Pandey M, Hua CK, Mun CS, Jing JK, Kong L, et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J Tradit Complement Med. Elsevier; 2018;8: 361–376. doi: 10.1016/j.jtcme.2017.08.012 29992107

13. Jaramillo MC, Arango GJ, González MC, Robledo SM, Velez ID. Cytotoxicity and antileishmanial activity of Annona muricata pericarp. Fitoterapia. 2000;71: 183–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/10727816 10727816

14. Ménan H, Banzouzi J-T, Hocquette A, Pélissier Y, Blache Y, Koné M, et al. Antiplasmodial activity and cytotoxicity of plants used in West African traditional medicine for the treatment of malaria. J Ethnopharmacol. 2006;105: 131–136. doi: 10.1016/j.jep.2005.10.027 16368205

15. Moghadamtousi SZ, Rouhollahi E, Hajrezaie M, Karimian H, Abdulla MA, Kadir HA. Annona muricata leaves accelerate wound healing in rats via involvement of Hsp70 and antioxidant defence. Int J Surg. 2015;18: 110–117. doi: 10.1016/j.ijsu.2015.03.026 25899210

16. Padma P, Chansouria JPN, Khosa RL. Effect of alcohol extract ofAnnona muricata on cold immobilization stress induced tissue lipid peroxidation. Phyther Res. John Wiley & Sons, Ltd; 1997;11: 326–327. doi: 10.1002/(SICI)1099-1573(199706)11:4<326::AID-PTR94>3.0.CO;2-B

17. Zorofchian Moghadamtousi S, Rouhollahi E, Karimian H, Fadaeinasab M, Firoozinia M, Ameen Abdulla M, et al. The chemopotential effect of Annona muricata leaves against azoxymethane-induced colonic aberrant crypt foci in rats and the apoptotic effect of acetogenin annomuricin E in HT-29 Cells: a bioassay-guided approach. PLoS One. 2015;10: e0122288. doi: 10.1371/journal.pone.0122288 25860620

18. Coria-Téllez A V., Montalvo-Gónzalez E, Yahia EM, Obledo-Vázquez EN. Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arab J Chem. Elsevier; 2018;11: 662–691. doi: 10.1016/J.ARABJC.2016.01.004

19. Anuragi H, Dhaduk HL, Kumar S, Dhruve JJ, Parekh MJ, Sakure AA. Molecular diversity of Annona species and proximate fruit composition of selected genotypes. 3 Biotech. 2016;6. doi: 10.1007/s13205-016-0520-9 28330276

20. Alitonou GA, Tchobo FP, Sessou P, Avlessi F, Menut C, Sohounhloue DCK. Chemical composition, antiradical and anti-inflammatory activities of four annonaceae from Benin. J Pharm Chem Biol Sci. 2013;3: 914–923.

21. George VC, Kumar DRN, Rajkumar V, Suresh PK, Kumar RA. Quantitative assessment of the relative antineoplastic potential of the n-butanolic leaf extract of Annona muricata Linn. in normal and immortalized human cell lines. Asian Pac J Cancer Prev. 2012;13: 699–704. Available: http://www.ncbi.nlm.nih.gov/pubmed/22524847 doi: 10.7314/apjcp.2012.13.2.699 22524847

22. Nawwar M, Ayoub N, Hussein S, Hashim A, El-Sharawy R, Wende K, et al. Flavonol triglycoside and investigation of the antioxidant and cell stimulating activities of Annona muricata Linn. Arch Pharm Res. 2012;35: 761–767. doi: 10.1007/s12272-012-0501-4 22644843

23. Adeyemi DO, Komolafe OA, Adewole OS, Obuotor EM, Abiodun AA, Adenowo TK. Histomorphological and morphometric studies of the pancreatic islet cells of diabetic rats treated with extracts of Annona muricata. Folia Morphol (Warsz). 2010;69: 92–100. Available: http://www.ncbi.nlm.nih.gov/pubmed/20512759

24. Atta MS, Almadaly EA, El-Far AH, Saleh RM, Assar DH, Al Jaouni SK, et al. Thymoquinone defeats diabetes-induced testicular damage in rats targeting antioxidant, inflammatory and aromatase expression. Int J Mol Sci. 2017;18. doi: 10.3390/ijms18050919 28448463

25. Florence NT, Benoit MZ, Jonas K, Alexandra T, Désiré DDP, Pierre K, et al. Antidiabetic and antioxidant effects of Annona muricata (Annonaceae), aqueous extract on streptozotocin-induced diabetic rats. J Ethnopharmacol. 2014;151: 784–790. doi: 10.1016/j.jep.2013.09.021 24076471

26. Pardon MC, Gould GG, Garcia A, Phillips L, Cook MC, Miller SA, et al. Stress reactivity of the brain noradrenergic system in three rat strains differing in their neuroendocrine and behavioral responses to stress: implications for susceptibility to stress-related neuropsychiatric disorders. Neuroscience. 2002;115: 229–242. Available: http://www.ncbi.nlm.nih.gov/pubmed/12401336 doi: 10.1016/s0306-4522(02)00364-0 12401336

27. Buccafusco JJ. Methods of Behavior Analysis in Neuroscience [Internet]. Methods of Behavior Analysis in Neuroscience. CRC Press/Taylor & Francis; 2009. Available: http://www.ncbi.nlm.nih.gov/pubmed/21204335

28. Pellow S, Chopin P, File SE, Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985;14: 149–167. doi: 10.1016/0165-0270(85)90031-7 2864480

29. Rajashree R, Kholkute SD, Goudar SS. Effects of duration of diabetes on behavioural and cognitive parameters in streptozotocin-induced juvenile diabetic rats. Malays J Med Sci. 2011;18: 26–31. Available: http://www.ncbi.nlm.nih.gov/pubmed/22589670 22589670

30. Hillmann GZ. Prostatic and total acid phosphatase estimation. Klin Chem Klin Biochem. 1971;9: 273.

31. Belfield A, Goldberg D. Colorimetric determination of alkaline phosphatase activity. Enzyme. 1971;12: 561–566. 5169852

32. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95: 351–358. doi: 10.1016/0003-2697(79)90738-3 36810

33. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5: 62–71. doi: 10.1006/niox.2000.0319 11178938

34. Beutler E, Durno O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963;61: 882–8. 13967893

35. Nishikimi M, Appaji Rao N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun. 1972;46: 849–854. doi: 10.1016/s0006-291x(72)80218-3 4400444

36. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72: 248–254. doi: 10.1006/abio.1976.9999 942051

37. Yuan J, Reed A, Chen F, Stewart CN, Klein D, Bustin S, et al. Statistical analysis of real-time PCR data. BMC Bioinformatics. BioMed Central; 2006;7: 85. doi: 10.1186/1471-2105-7-85 16504059

38. Ghosh J, Das J, Manna P, Sil PC. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: Role of NF-κB, p38 and JNK MAPK pathway. Toxicol Appl Pharmacol. 2009;240: 73–87. doi: 10.1016/j.taap.2009.07.008 19616567

39. Mabrouk A, Ben Cheikh H. Thymoquinone supplementation ameliorates lead-induced testis function impairment in adult rats. Toxicol Ind Health. 2014;32: 1114–1121. doi: 10.1177/0748233714548474 25216800

40. Al Wafai RJ. Nigella Sativa and thymoquinone suppress cyclooxygenase-2 and oxidative stress in pancreatic tissue of streptozotocin-induced diabetic rats. Pancreas. 2013;42: 841–849. doi: 10.1097/MPA.0b013e318279ac1c 23429494

41. Nair KS, Ford GC, Ekberg K, Fernqvist-Forbes E, Wahren J. Protein dynamics in whole body and in splanchnic and leg tissues in type I diabetic patients. J Clin Invest. 1995;95: 2926–2937. doi: 10.1172/JCI118000 7769135

42. Wayhs CAY, Manfredini V, Sitta A, Deon M, Ribas G, Vanzin C, et al. Protein and lipid oxidative damage in streptozotocin-induced diabetic rats submitted to forced swimming test: the insulin and clonazepam effect. Metab Brain Dis. 2010;25: 297–304. doi: 10.1007/s11011-010-9211-0 20838862

43. Bonilla-Jaime H, Guadarrama-Cruz G, Alarcon-Aguilar FJ, Limón-Morales O, Vazquez-Palacios G. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT1A and 5-HT2A receptors. J Nat Med. 2015;69: 463–470. doi: 10.1007/s11418-015-0909-5 26062718

44. Carter M, Shieh J. Chapter 2—Animal Behavior. In: Carter M, Shieh J (eds) Guide to Research Techniques in Neuroscience. Second Edi. San Diego: Academic Press; 2015. doi: 10.1016/c2013-0-06868-5

45. Aucoin M, Bhardwaj S. Generalized Anxiety Disorder and Hypoglycemia Symptoms Improved with Diet Modification. Case Rep Psychiatry. Hindawi Limited; 2016;2016: 7165425. doi: 10.1155/2016/7165425 27493821

46. Damián JP, Acosta V, Da Cuña M, Ramírez I, Oddone N, Zambrana A, et al. Effect of resveratrol on behavioral performance of streptozotocin-induced diabetic mice in anxiety tests. Exp Anim. 2014;63: 277–287. doi: 10.1538/expanim.63.277 25077757

47. Sautou-Miranda V, Gremeau I, Chamard I, Cassagnes J, Chopineau J. Stability of dopamine hydrochloride and of dobutamine hydrochloride in plastic syringes and administration sets. Am J Heal Syst Pharm. 1996;53: 186,193. Available: http://www.ncbi.nlm.nih.gov/pubmed/8653489

48. Cryan JF, Sweeney FF. The age of anxiety: role of animal models of anxiolytic action in drug discovery. Br J Pharmacol. 2011;164: 1129–1161. doi: 10.1111/j.1476-5381.2011.01362.x 21545412

49. Kanimozhi V, Palanivel K, Akbarsha MA, Kadalmani B. Tributyltin-mediated hepatic, renal and testicular tissue damage in male Syrian hamster (Mesocricetus auratus): a study on impact of oxidative stress. Springerplus. 2016;5. doi: 10.1186/s40064-016-3186-1 27652096

50. Pentikäinen V, Erkkilä K, Suomalainen L, Parvinen M, Dunkel L. Estradiol acts as a germ cell survival factor in the human testis in vitro. J Clin Endocrinol Metab. 2000;85: 2057–2067. doi: 10.1210/jcem.85.5.6600 10843196

51. Sharpe RM, Kerr JB, McKinnell C, Millar M. Temporal relationship between androgen-dependent changes in the volume of seminiferous tubule fluid, lumen size and seminiferous tubule protein secretion in rats. J Reprod Fertil. 1994;101: 193–198. Available: http://www.ncbi.nlm.nih.gov/pubmed/8064681 doi: 10.1530/jrf.0.1010193 8064681

52. Farrell JB, Deshmukh A, Baghaie AA. Low testosterone and the association with type 2 diabetes. Diabetes Educ. 2008;34: 799–806. doi: 10.1177/0145721708323100 18832284

53. Ballester J, Muñoz MC, Domínguez J, Rigau T, Guinovart JJ, Rodríguez-Gil JE. Insulin-dependent diabetes affects testicular function by FSH- and LH-linked mechanisms. J Androl. 2004;25: 706–719. doi: 10.1002/j.1939-4640.2004.tb02845.x 15292100

54. Samarghandian S, Azimi-Nezhad M, Farkhondeh T. Catechin Treatment Ameliorates Diabetes and Its Complications in Streptozotocin-Induced Diabetic Rats. Dose Response. SAGE Publications; 2017;15: 1559325817691158. doi: 10.1177/1559325817691158 28228702

55. Suchal K, Malik S, Khan S, Malhotra R, Goyal S, Bhatia J, et al. Molecular Pathways Involved in the Amelioration of Myocardial Injury in Diabetic Rats by Kaempferol. Int J Mol Sci. Multidisciplinary Digital Publishing Institute; 2017;18: 1001. doi: 10.3390/ijms18051001 28505121

56. Abdelmoaty MA, Ibrahim MA, Ahmed NS, Abdelaziz MA. Confirmatory studies on the antioxidant and antidiabetic effect of quercetin in rats. Indian J Clin Biochem. Springer; 2010;25: 188–92. doi: 10.1007/s12291-010-0034-x 23105908

57. Balbi ME, Tonin FS, Mendes AM, Borba HH, Wiens A, Fernandez-Llimos F, et al. Antioxidant effects of vitamins in type 2 diabetes: a meta-analysis of randomized controlled trials. Diabetol Metab Syndr. BioMed Central; 2018;10: 18. doi: 10.1186/s13098-018-0318-5 29568330

58. Adewole SO, Ojewole JA. Protective effects of Annona muricata Linn. (Annonaceae) leaf aqueous extract on serum lipid profiles and oxidative stress in hepatocytes of streptozotocin-treated diabetic rats. Afr J Tradit Complement Altern Med. 2008;6: 30–41. Available: http://www.ncbi.nlm.nih.gov/pubmed/20162039 doi: 10.4314/ajtcam.v6i1.57071 20162039

59. Bauche F, Fouchard MH, Jegou B. Antioxidant system in rat testicular cells. FEBS Lett. 1994;349: 392–396. Available: http://www.ncbi.nlm.nih.gov/pubmed/8050602 doi: 10.1016/0014-5793(94)00709-8 8050602

60. Missaghian E, Kempna P, Dick B, Hirsch A, Alikhani-Koupaei R, Jegou B, et al. Role of DNA methylation in the tissue-specific expression of the CYP17A1 gene for steroidogenesis in rodents. J Endocrinol. 2009;202: 99–109. doi: 10.1677/JOE-08-0353 19403566

61. Akpovi CD, Murphy BD, Erickson RP, Pelletier RM. Dysregulation of Testicular Cholesterol Metabolism Following Spontaneous Mutation of the Niemann-Pick C1 Gene in Mice1. Biol Reprod. 2014;91. doi: 10.1095/biolreprod.114.119412 25009206

62. Zhao L, Gu Q, Xiang L, Dong X, Li H, Ni J, et al. Curcumin inhibits apoptosis by modulating Bax/Bcl-2 expression and alleviates oxidative stress in testes of streptozotocin-induced diabetic rats. Ther Clin Risk Manag. 2017;Volume 13: 1099–1105. doi: 10.2147/TCRM.S141738 28894373

63. Maganhin CC, Simões RS, Fuchs LFP, Sasso GRS, Simões MJ, Baracat EC, et al. Melatonin influences on steroidogenic gene expression in the ovary of pinealectomized rats. Fertil Steril. 2014;102: 291–298. doi: 10.1016/j.fertnstert.2014.04.006 24825418

64. Caimari A, Oliver P, Rodenburg W, Keijer J, Palou A. Feeding conditions control the expression of genes involved in sterol metabolism in peripheral blood mononuclear cells of normoweight and diet-induced (cafeteria) obese rats. J Nutr Biochem. 2010;21: 1127–1133. doi: 10.1016/j.jnutbio.2009.10.001 20172705

65. Dkhil M, Al-Khalifa M, Al-Quraishy S, Zrieq R, Moneim A. Indigofera oblongifolia mitigates lead-acetate-induced kidney damage and apoptosis in a rat model. Drug Des Devel Ther. 2016;10: 1847. doi: 10.2147/DDDT.S105511 27330278

66. Mohseni M, Mihandoost E, Shirazi A, Sepehrizadeh Z, Bazzaz JT, Ghazi-khansari M. Melatonin may play a role in modulation of bax and bcl-2 expression levels to protect rat peripheral blood lymphocytes from gamma irradiation-induced apoptosis. Mutat Res Mol Mech Mutagen. 2012;738–739: 19–27. doi: 10.1016/j.mrfmmm.2012.08.006 22982225

67. Lebda MA, El-Far AH, Noreldin AE, Elewa YHA, Al Jaouni SK, Mousa SA. Protective Effects of Miswak (Salvadora persica) against Experimentally Induced Gastric Ulcers in Rats. Oxid Med Cell Longev. 2018;2018: 1–14. doi: 10.1155/2018/6703296 30116487

68. Wu N, Sarna LK, Siow YL, O K. Regulation of hepatic cholesterol biosynthesis by berberine during hyperhomocysteinemia. Am J Physiol Integr Comp Physiol. 2011;300: R635–R643. doi: 10.1152/ajpregu.00441.2010 21178122


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden