Malaria vaccine candidates displayed on novel virus-like particles are immunogenic and induce transmission-blocking activity


Autoři: Jo-Anne Chan aff001;  David Wetzel aff003;  Linda Reiling aff001;  Kazutoyo Miura aff005;  Damien R. Drew aff001;  Paul R. Gilson aff001;  David A. Anderson aff001;  Jack S. Richards aff001;  Carole A. Long aff005;  Manfred Suckow aff003;  Volker Jenzelewski aff003;  Takafumi Tsuboi aff007;  Michelle J. Boyle aff008;  Michael Piontek aff003;  James G. Beeson aff001
Působiště autorů: Burnet Institute, Life Sciences, Melbourne, VIC, Australia aff001;  Department of Immunology, Central Clinical School, Monash University, VIC, Australia aff002;  ARTES Biotechnology GmbH, Langenfeld, Germany aff003;  Technical University of Dortmund, Laboratory of Plant and Process Design, Dortmund, Germany aff004;  Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America aff005;  Department of Medicine, University of Melbourne, VIC, Australia aff006;  Proteo-Science Centre, Ehime University, Matsuyama, Ehime, Japan aff007;  Immunology Department, QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia aff008
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0221733

Souhrn

The development of effective malaria vaccines remains a global health priority. Currently, the most advanced vaccine, known as RTS,S, has only shown modest efficacy in clinical trials. Thus, the development of more efficacious vaccines by improving the formulation of RTS,S for increased efficacy or to interrupt malaria transmission are urgently needed. The RTS,S vaccine is based on the presentation of a fragment of the sporozoite antigen on the surface of virus-like particles (VLPs) based on human hepatitis B virus (HBV). In this study, we have developed and evaluated a novel VLP platform based on duck HBV (known as Metavax) for malaria vaccine development. This platform can incorporate large and complex proteins into VLPs and is produced in a Hansenula cell line compatible with cGMP vaccine production. Here, we have established the expression of leading P. falciparum malaria vaccine candidates as VLPs. This includes Pfs230 and Pfs25, which are candidate transmission-blocking vaccine antigens. We demonstrated that the VLPs effectively induce antibodies to malaria vaccine candidates with minimal induction of antibodies to the duck-HBV scaffold antigen. Antibodies to Pfs230 also recognised native protein on the surface of gametocytes, and antibodies to both Pfs230 and Pfs25 demonstrated transmission-reducing activity in standard membrane feeding assays. These results establish the potential utility of this VLP platform for malaria vaccines, which may be suitable for the development of multi-component vaccines that achieve high vaccine efficacy and transmission-blocking immunity.

Klíčová slova:

Biology and life sciences – Physiology – Antibodies – Vaccination and immunization – Immunologic adjuvants – Biochemistry – Proteins – Immune system proteins – Recombinant proteins – Cell biology – Cellular types – Animal cells – Germ cells – Gametocytes – Medicine and health sciences – Immune physiology – Immunology – Infectious diseases – Infectious disease control – Vaccines – Parasitic diseases – Malaria – Tropical diseases – Public and occupational health – Preventive medicine – Research and analysis methods – Immunologic techniques – Immunoassays – Enzyme-linked immunoassays – Spectrum analysis techniques – Spectrophotometry – Cytophotometry – Flow cytometry


Zdroje

1. World Health Organization. World malaria report 2018. 2018: 1–210.

2. Beeson JG, Kurtovic L, Dobaño C, Opi DH, Chan J-A, Feng G, et al. Challenges and strategies for developing efficacious and long-lasting malaria vaccines. Sci Transl Med. American Association for the Advancement of Science; 2019;11: eaau1458. doi: 10.1126/scitranslmed.aau1458 30626712

3. Malaria Vaccine Funders Group. Malaria Vaccine Technology Roadmap 2013. https://www.malariavaccine.org/malaria-and-vaccines/malaria-vaccine-roadmap. Accessed March 2019

4. RTS S Clinical Trials Partnership. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386: 31–45. doi: 10.1016/S0140-6736(15)60721-8

5. Agnandji ST, Lell B, Soulanoudjingar SS, Fernandes JF, Abossolo BP, Conzelmann C, et al. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N Engl J Med. 2011;365: 1863–1875. doi: 10.1056/NEJMoa1102287 22007715

6. White MT, Verity R, Griffin JT, Asante KP, Owusu-Agyei S, Greenwood B, et al. Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: secondary analysis of data from a phase 3 randomised controlled trial. Lancet Infect Dis. 2015;15: 1450–1458. doi: 10.1016/S1473-3099(15)00239-X 26342424

7. Sauerwein RW, Bousema T. Transmission blocking malaria vaccines: Assays and candidates in clinical development. Vaccine. 2015;33: 7476–7482. doi: 10.1016/j.vaccine.2015.08.073 26409813

8. Schneider P, Reece SE, van Schaijk BCL, Bousema T, Lanke KHW, Meaden CSJ, et al. Quantification of female and male Plasmodium falciparum gametocytes by reverse transcriptase quantitative PCR. Mol Biochem Parasitol. 2015;199: 29–33. doi: 10.1016/j.molbiopara.2015.03.006 25827756

9. Stone WJR, Dantzler KW, Nilsson SK, Drakeley CJ, Marti M, Bousema T, et al. Naturally acquired immunity to sexual stage P. falciparum parasites. Parasitology. 2016;143: 187–198. doi: 10.1017/S0031182015001341 26743529

10. Malkin EM, Durbin AP, Diemert DJ, Sattabongkot J, Wu Y, Miura K, et al. Phase 1 vaccine trial of Pvs25H: a transmission blocking vaccine for Plasmodium vivax malaria. Vaccine. 2005;23: 3131–3138. doi: 10.1016/j.vaccine.2004.12.019 15837212

11. Sagara I, Healy SA, Assadou MH, Gabriel EE, Kone M, Sissoko K, et al. Safety and immunogenicity of Pfs25H-EPA/Alhydrogel, a transmission-blocking vaccine against Plasmodium falciparum: a randomised, double-blind, comparator-controlled, dose-escalation study in healthy Malian adults. Lancet Infect Dis. 2018;18: 969–982. doi: 10.1016/S1473-3099(18)30344-X 30061051

12. Wu Y, Ellis RD, Shaffer D, Fontes E, Malkin EM, Mahanty S, et al. Phase 1 trial of malaria transmission blocking vaccine candidates Pfs25 and Pvs25 formulated with montanide ISA 51. PLoS ONE. 2008;3: e2636. doi: 10.1371/journal.pone.0002636 18612426

13. Talaat KR, Ellis RD, Hurd J, Hentrich A, Gabriel E, Hynes NA, et al. Safety and Immunogenicity of Pfs25-EPA/Alhydrogel®, a Transmission Blocking Vaccine against Plasmodium falciparum: An Open Label Study in Malaria Naïve Adults. PLoS ONE. 2016;11: e0163144. doi: 10.1371/journal.pone.0163144 27749907

14. Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M, et al. Recent advances in recombinant protein-based malaria vaccines. Vaccine. 2015;33: 7433–7443. doi: 10.1016/j.vaccine.2015.09.093 26458807

15. Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017. doi: 10.1016/j.smim.2017.08.014 28887001

16. Wetzel D, Rolf T, Suckow M, Kranz A, Barbian A, Chan J-A, et al. Establishment of a yeast-based VLP platform for antigen presentation. Microb Cell Fact. 2018;17: 17. doi: 10.1186/s12934-018-0868-0 29402276

17. Grgacic EVL, Anderson DA. Virus-like particles: passport to immune recognition. Methods. 2006;40: 60–65. doi: 10.1016/j.ymeth.2006.07.018 16997714

18. Bachmann MF, Jennings GT. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol. Nature Publishing Group; 2010;10: 787–796. doi: 10.1038/nri2868 20948547

19. Kündig TM, Senti G, Schnetzler G, Wolf C, Prinz Vavricka BM, Fulurija A, et al. Der p 1 peptide on virus-like particles is safe and highly immunogenic in healthy adults. J Allergy Clin Immunol. 2006;117: 1470–1476. doi: 10.1016/j.jaci.2006.01.040 16751015

20. Brune KD, Leneghan DB, Brian IJ, Ishizuka AS, Bachmann MF, Draper SJ, et al. Plug-and-Display: decoration of Virus-Like Particles via isopeptide bonds for modular immunization. Sci Rep. Nature Publishing Group; 2016;6: 19234. doi: 10.1038/srep19234 26781591

21. Keller SA, Bauer M, Manolova V, Muntwiler S, Saudan P, Bachmann MF. Cutting edge: limited specialization of dendritic cell subsets for MHC class II-associated presentation of viral particles. J Immunol. 2010;184: 26–29. doi: 10.4049/jimmunol.0901540 19949081

22. Chichester JA, Green BJ, Jones RM, Shoji Y, Miura K, Long CA, et al. Safety and immunogenicity of a plant-produced Pfs25 virus-like particle as a transmission blocking vaccine against malaria: A Phase 1 dose-escalation study in healthy adults. Vaccine. 2018;36: 5865–5871. doi: 10.1016/j.vaccine.2018.08.033 30126674

23. Williamson KC, KEISTER DB, Muratova O, Kaslow DC. Recombinant Pfs230, a Plasmodium falciparum gametocyte protein, induces antisera that reduce the infectivity of Plasmodium falciparum to mosquitoes. Mol Biochem Parasitol. 1995;75: 33–42. doi: 10.1016/0166-6851(95)02507-3 8720173

24. Macdonald NJ, Nguyen V, Shimp R, Reiter K, Herrera R, Burkhardt M, et al. Structural and Immunological Characterization of Recombinant 6-Cysteine Domains of the Plasmodium falciparum Sexual Stage Protein Pfs230. J Biol Chem. 2016;291: 19913–19922. doi: 10.1074/jbc.M116.732305 27432885

25. Wetzel D, Chan J-A, Suckow M, Barbian A, Weniger M, Jenzelewski V, et al. Display of malaria transmission-blocking antigens on chimeric DHBV-derived virus-like particles produced in Hansenula polymorpha. bioRxiv doi: 10.1101/595538

26. Schaefer S, Piontek M, Ahn S, Papendieck A, Janowicz Z, Timmermans I, et al. Recombinant hepatitis B vaccines—disease characterization and vaccine production. In: G G, editor. Hansenula polymorpha—biology and applications. 2002. pp. 175–210.

27. Chan J-A, Drew DR, Reiling L, Lisboa-Pinto A, Dinko B, Sutherland CJ, et al. Low Levels of Human Antibodies to Gametocyte-Infected Erythrocytes Contrasts the PfEMP1-Dominant Response to Asexual Stages in P. falciparum Malaria. Front Immunol. 2018;9: 3126. doi: 10.3389/fimmu.2018.03126 30692996

28. Tsuboi T, Takeo S, Iriko H, Jin L, Tsuchimochi M, Matsuda S, et al. Wheat germ cell-free system-based production of malaria proteins for discovery of novel vaccine candidates. Infection and Immunity. American Society for Microbiology Journals; 2008;76: 1702–1708. doi: 10.1128/IAI.01539-07 18268027

29. Dinko B, King E, Targett GAT, Sutherland CJ. Antibody responses to surface antigens of Plasmodium falciparum gametocyte-infected erythrocytes and their relation to gametocytaemia. Parasite Immunol. John Wiley & Sons, Ltd; 2016;38: 352–364. doi: 10.1111/pim.12323 27084060

30. Chan J-A, Howell KB, Reiling L, Ataíde R, Mackintosh CL, Fowkes FJI, et al. Targets of antibodies against Plasmodium falciparum-infected erythrocytes in malaria immunity. J Clin Invest. 2012. doi: 10.1172/JCI62182 22850879

31. Miura K, Deng B, Tullo G, Diouf A, Moretz SE, Locke E, et al. Qualification of standard membrane-feeding assay with Plasmodium falciparum malaria and potential improvements for future assays. PLoS ONE. Public Library of Science; 2013;8: e57909. doi: 10.1371/journal.pone.0057909 23483940

32. Miura K, Swihart BJ, Deng B, Zhou L, Pham TP, Diouf A, et al. Transmission-blocking activity is determined by transmission-reducing activity and number of control oocysts in Plasmodium falciparum standard membrane-feeding assay. Vaccine. 2016;34: 4145–4151. doi: 10.1016/j.vaccine.2016.06.066 27372156

33. Tachibana M, Miura K, Takashima E, Morita M, Nagaoka H, Zhou L, et al. Identification of domains within Pfs230 that elicit transmission blocking antibody responses. Vaccine. 2019;37: 1799–1806. doi: 10.1016/j.vaccine.2019.02.021 30824357


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden