The diagnostic value of pleural fluid homocysteine in malignant pleural effusion


Autoři: Jose D. Santotoribio aff001;  Luis del Valle-Vazquez aff003;  Angela García-de la Torre aff004;  Daniel del Castillo-Otero aff006;  Juan-Bosco Lopez-Saez aff007;  Maria J. Sanchez del Pino aff002
Působiště autorů: Department of Laboratory Medicine, Puerto Real University Hospital, Cadiz, Spain aff001;  Department of Biomedicine, Biotechnology and Public Health, Cadiz University School of Medicine, Cadiz, Spain aff002;  Health Center Las Beatas, Alcala de Guadaira, Sevilla, Spain aff003;  Department of Laboratory Medicine, Virgen de la Victoria University Hospital, Malaga, Spain aff004;  Instituto de Investigacion Biomédica de Malaga (IBIMA), Malaga, Spain aff005;  Department of Pneumology, Puerto Real University Hospital, Cadiz, Spain aff006;  Department of Medicine, Cadiz University School of Medicine, Cadiz, Spain aff007;  Department of Internal Medicine, Puerto Real University Hospital, Cadiz, Spain aff008
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222616

Souhrn

Background

Pleural fluid homocysteine (HCY) can be useful for diagnosis of malignant pleural effusion (MPE). There are no published studies comparing the diagnostic accuracy of HCY with other tumour markers in pleural fluid for diagnosis of MPE. The aim was to compare the accuracy of HCY with that of carcinoembryonic antigen (CEA), cancer antigen (CA) 15.3, CA19.9 and CA125 in pleural fluid and to develop a probabilistic model using these biomarkers to differentiate benign (BPE) from MPE.

Methods

Patients with pleural effusion were randomly included. HCY, CEA, CA15.3, CEA19.9 and CA125 were quantified in pleural fluid. Patients were classified into two groups: MPE or BPE. By applying logistic regression analysis, a multivariate probabilistic model was developed using pleural fluid biomarkers. The diagnostic accuracy was determined by receiver operating characteristic (ROC) curves and calculating the area under the curve (AUC).

Results

Population of study comprised 133 patients (72 males and 61 females) aged between 1 and 96 years (median = 70 years), 81 BPE and 52 MPE. The logistic regression analysis included HCY (p<0.0001) and CEA (p = 0.0022) in the probabilistic model and excluded the other tumour markers. The probabilistic model was: HCY+CEA = Probability(%) = 100×(1+e-z)-1, where Z = 0.5471×[HCY]+0.3846×[CEA]–8.2671. The AUCs were 0.606, 0.703, 0.778, 0.800, 0.846 and 0.948 for CA125, CA19.9, CEA, CA15.3, HCY and HCY+CEA, respectively.

Conclusions

Pleural fluid HCY has higher accuracy for diagnosis of MPE than CEA, CA15.3, CA19.9 and CA125. The combination of HCY and CEA concentrations in pleural fluid significantly improves the diagnostic accuracy of the test.

Klíčová slova:

Biomarkers – Cancer detection and diagnosis – Diagnostic medicine – Normal distribution – Regression analysis – Pleural effusion – Metastatic tumors


Zdroje

1. Chen S, Wang Y, An L, Fei ZT, Li T. The diagnostic value of survivin in malignant pleural effusion: A meta-analysis. Clin Chim Acta. 2015;441:142–7. doi: 10.1016/j.cca.2014.12.029 25559946

2. Thomas JM, Musani AI. Malignant pleural effusions: a review. Clin Chest Med. 2013;34:459–71. doi: 10.1016/j.ccm.2013.05.004 23993817

3. Egan AM, McPhillips D, Sarkar S, Breen DP. Malignant pleural effusion. QJM. 2014;107:179–84. doi: 10.1093/qjmed/hct245 24368856

4. Roberts ME, Neville E, Berrisford RG, Antunes G, Ali NJ. BTS Pleural Disease Guideline Group. Management of a malignant pleural effusion: British Thoracic Society Pleural Disease Guideline 2010. Thorax. 2010;65:32–40. doi: 10.1136/thx.2008.111435

5. Ruckdeschel JC. Management of malignant pleural effusions. Semin Oncol. 1994;22:58–63.

6. Wang Y, Chen Z, Chen J, Pan J, Zhang W, Pan Q, et al. The diagnostic value of apolipoprotein E in malignant pleural effusion associated with non-small cell lung cáncer. Clin Chim Acta. 2013;421:230–5. doi: 10.1016/j.cca.2013.03.013 23523589

7. Heffner JE, Klein JS. Recent advances in the diagnosis and management of malignant pleural effusions. Mayo Clin Proc. 2008;83:235–50. doi: 10.4065/83.2.235 18241636

8. Santotoribio JD, Sánchez-Linares P, Cabrera-Alarcón JL, Guerrero JM. Diagnostic value of carcinoembryonic antigen measurement in pleural fluid. Med Clin (Barc). 2010;135:574–5. doi: 10.1016/j.medcli.2009.06.023 19683773

9. Li D, Wang B, Hu Q, Shen Y, Xu D, Wang T, et al. Diagnostic accuracy of MOC-31 for malignant effusions: a meta-analysis. Tumour Biol. 2014;35:6003–9. doi: 10.1007/s13277-014-1795-2 24609803

10. Trapé J, Molina R, Sant F. Clinical evaluation of the simultaneous determination of tumor markers in fluid and serum and their ratio in the differential diagnosis of serous effusions. Tumor Biol. 2004;25:276–81.

11. Trapé J, Molina R, Sant F, Montesinos J, Arnau A, Franquesa J, et al. Diagnostic accuracy of tumour markers in serous effusions: a validation study. Tumour Biol. 2012;33:1661–8. doi: 10.1007/s13277-012-0422-3 22678976

12. Ferreiro L, Toubes ME, Valdés L. Contribution of pleural fluid analysis to the diagnosis of pleural effusion. Med Clin (Barc). 2015;145:171–7. doi: 10.1016/j.medcli.2014.08.005 25433793

13. Liang QL, Shi HZ, Qin XJ, Liang XD, Jiang J, Yang HB: Diagnostic accuracy of tumour markers for malignant pleural effusion: A meta-analysis. Thorax. 2008;63:35–41. doi: 10.1136/thx.2007.077958 17573438

14. Santotoribio JD, Cañavate-Solano C, Garcia-de la Torre A, Del Valle-Vazquez L, Arce-Matute F, Cuadros-Muñoz JF, et al. Homocysteine: new tumor marker in pleural fluid. Tumour Biol. 2015;36:7941–5. doi: 10.1007/s13277-015-3517-9 25956279

15. World Medical Association. World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. JAMA. 2013;310:2191–4. doi: 10.1001/jama.2013.281053 24141714

16. Cobo E. Multivariate models in biomedical research: criteria for the inclusion of variables. Med Clin (Barc). 2002;119:230–7

17. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 1996;49:1373–9. doi: 10.1016/s0895-4356(96)00236-3 8970487

18. Shi HZ, Liang QL, Jiang J, Qin XJ, Yang HB. Diagnostic value of carcinoembryonic antigen in malignant pleural effusion: a meta-analysis. Respirology. 2008;13:518–27. doi: 10.1111/j.1440-1843.2008.01291.x 18422869

19. Wu Q, Li M, Zhang S, Chen L, Gu X, Xu F. Clinical diagnostic utility of CA 15–3 for the diagnosis of malignant pleural effusion: A meta-analysis. Exp Ther Med. 2015;9:232–8. doi: 10.3892/etm.2014.2039 25452808

20. Porcel JM, Vives M, Esquerda A, Salud A, Pérez B, Rodríguez-Panadero F. Use of a panel of tumor markers (carcinoembryonic antigen, cancer antigen 125, carbohydrate antigen 15–3, and cytokeratin 19 fragments) in pleural fluid for the differential diagnosis of benign and malignant effusions. Chest. 2004;126:1757–63. doi: 10.1378/chest.126.6.1757 15596670

21. Gaspar MJ, De Miguel J, García Díaz JD, Díez M. Clinical utility of a combination of tumour markers in the diagnosis of malignant pleural effusions. Anticancer Res. 2008;28:2947–52. 19031938

22. Yang Y, Liu YL, Shi HZ. Diagnostic Accuracy of Combinations of Tumor Markers for Malignant Pleural Effusion: An Updated Meta-Analysis. Respiration. 2017;94:62–9. doi: 10.1159/000468545 28427079

23. Maroto-Sánchez B, Lopez-Torres O, Palacios G, González-Gross M. What do we know about homocysteine and exercise? A review from the literature. Clin Chem Lab Med. 2016;54:1561–77. doi: 10.1515/cclm-2015-1040 26876813

24. Lippi G, Plebani M. Hyperhomocysteinemia in health and disease: where we are now, and where do we go from here? Clin Chem Lab Med. 2012;50:2075–80. doi: 10.1515/cclm-2012-0372 23093205

25. Volarić D, Flego V, Žauhar G, Bulat-Kardum L. Diagnostic value of tumour markers in pleural effusions. Biochem Med (Zagreb). 2018;28:010706. doi: 10.11613/BM.2018.010706 29472801


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden