Endothelial dysfunction and low-grade inflammation in the transition to renal replacement therapy
Autoři:
April C. E. van Gennip aff001; Natascha J. H. Broers aff001; Karlien J. ter Meulen aff001; Bernard Canaud aff003; Maarten H. L. Christiaans aff001; Tom Cornelis aff005; Mariëlle A. C. J. Gelens aff001; Marc M. H. Hermans aff006; Constantijn J. A. M. Konings aff007; Jeroen B. van der Net aff001; Frank M. van der Sande aff001; Casper G. Schalkwijk aff008; Frank Stifft aff010; Joris J. J. M. Wirtz aff011; Jeroen P. Kooman aff001; Remy J. H. Martens aff001
Působiště autorů:
Department of Internal Medicine, Division of Nephrology, Maastricht University Medical Center+, Maastricht, the Netherlands
aff001; NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, the Netherlands
aff002; Medical Office EMEA, Fresenius Medical Care Deutschland GmbH, Bad Homburg, Germany
aff003; Montpellier University, Montpellier, France
aff004; Department of Nephrology, Jessa Hospital, Hasselt, Belgium
aff005; Department of Internal Medicine, Division of Nephrology, Viecuri Medical Center, Venlo, the Netherlands
aff006; Department of Internal Medicine, Division of Nephrology, Catharina Hospital Eindhoven, Eindhoven
aff007; Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, the Netherlands
aff008; CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, the Netherlands
aff009; Department of Internal Medicine, Division of Nephrology, Zuyderland Medical Center, Sittard-Geleen, the Netherlands
aff010; Department of Internal Medicine, Division of Nephrology, St. Laurentius Hospital, Roermond, the Netherlands
aff011
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222547
Souhrn
Introduction
End-stage renal disease (ESRD) strongly associates with cardiovascular disease (CVD) risk. This risk is not completely mitigated by renal replacement therapy. Endothelial dysfunction (ED) and low-grade inflammation (LGI) may contribute to the increased CVD risk. However, data on serum biomarkers of ED and LGI during the transition to renal replacement therapy (dialysis and kidney transplantation) are scarce.
Methods
We compared serum biomarkers of ED and LGI between 36 controls, 43 participants with chronic kidney disease (CKD) stage 5 non-dialysis (CKD5-ND), 20 participants with CKD stage 5 hemodialysis (CKD5-HD) and 14 participants with CKD stage 5 peritoneal dialysis (CKD5-PD). Further, in 34 and 15 participants repeated measurements were available during the first six months following dialysis initiation and kidney transplantation, respectively. Serum biomarkers of ED (sVCAM-1, E-selectin, P-selectin, thrombomodulin, sICAM-1, sICAM-3) and LGI (hs-CRP, SAA, IL-6, IL-8, TNF-α) were measured with a single- or multiplex array detection system based on electro-chemiluminescence technology.
Results
In linear regression analyses adjusted for potential confounders, participants with ESRD had higher levels of most serum biomarkers of ED and LGI than controls. In addition, in CKD5-HD levels of serum biomarkers of ED and LGI were largely similar to those in CKD5-ND. In contrast, in CKD5-PD levels of biomarkers of ED were higher than in CKD5-ND and CKD5-HD. Similarly, in linear mixed model analyses sVCAM-1, thrombomodulin, sICAM-1 and sICAM-3 increased after PD initiation. In contrast, incident HD patients showed an increase in sVCAM-1, P-selectin and TNF-α, but a decline of hs-CRP, SAA and IL-6. Further, following kidney transplantation sVCAM-1, thrombomodulin, sICAM-3 and TNF-α were lower at three months post-transplantation and remained stable in the three months thereafter.
Conclusions
Levels of serum biomarkers of ED and LGI were higher in ESRD as compared with controls. In addition, PD initiation and, less convincingly, HD initiation may increase levels of selected serum biomarkers of ED and LGI on top of uremia per se. In contrast to dialysis, several serum biomarkers of ED and LGI markedly declined following kidney transplantation.
Klíčová slova:
Biology and life sciences – Biochemistry – Biomarkers – Physiology – Interleukins – Developmental biology – Molecular development – Adhesion molecules – Medicine and health sciences – Nephrology – Medical dialysis – Chronic kidney disease – Surgical and invasive medical procedures – Transplantation – Organ transplantation – Renal transplantation – Urinary system procedures – Immune physiology – Immunology – Immune system – Innate immune system – Cytokines – Immune response – Inflammation – Diagnostic medicine – Signs and symptoms – Pathology and laboratory medicine
Zdroje
1. Bradbury BD, Fissell RB, Albert JM, Anthony MS, Critchlow CW, Pisoni RL, et al. Predictors of early mortality among incident US hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS). Clin J Am Soc Nephrol. 2007;2(1):89–99. doi: 10.2215/CJN.01170905 17699392
2. Shafi T, Meyer TW, Hostetter TH, Melamed ML, Parekh RS, Hwang S, et al. Free Levels of Selected Organic Solutes and Cardiovascular Morbidity and Mortality in Hemodialysis Patients: Results from the Retained Organic Solutes and Clinical Outcomes (ROSCO) Investigators. PLoS One. 2015;10(5):e0126048. doi: 10.1371/journal.pone.0126048 25938230
3. Robinson BM, Zhang J, Morgenstern H, Bradbury BD, Ng LJ, McCullough KP, et al. Worldwide, mortality risk is high soon after initiation of hemodialysis. Kidney Int. 2014;85(1):158–65. doi: 10.1038/ki.2013.252 23802192
4. de Jager DJ, Grootendorst DC, Jager KJ, van Dijk PC, Tomas LM, Ansell D, et al. Cardiovascular and noncardiovascular mortality among patients starting dialysis. JAMA. 2009;302(16):1782–9. doi: 10.1001/jama.2009.1488 19861670
5. Wolfe RA, Ashby VB, Milford EL, Ojo AO, Ettenger RE, Agodoa LY, et al. Comparison of mortality in all patients on dialysis, patients on dialysis awaiting transplantation, and recipients of a first cadaveric transplant. N Engl J Med. 1999;341(23):1725–30. Epub 1999/12/02. doi: 10.1056/NEJM199912023412303 10580071
6. Sarnak MJ, Levey AS, Schoolwerth AC, Coresh J, Culleton B, Hamm LL, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108(17):2154–69. Epub 2003/10/29. doi: 10.1161/01.CIR.0000095676.90936.80 14581387
7. Lin FJ, Tseng WK, Yin WH, Yeh HI, Chen JW, Wu CC. Residual Risk Factors to Predict Major Adverse Cardiovascular Events in Atherosclerotic Cardiovascular Disease Patients with and without Diabetes Mellitus. Sci Rep. 2017;7(1):9179. Epub 2017/08/25. doi: 10.1038/s41598-017-08741-0 28835613
8. Moody WE, Edwards NC, Madhani M, Chue CD, Steeds RP, Ferro CJ, et al. Endothelial dysfunction and cardiovascular disease in early-stage chronic kidney disease: cause or association? Atherosclerosis. 2012;223(1):86–94. doi: 10.1016/j.atherosclerosis.2012.01.043 22349087
9. Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116(1):85–97. doi: 10.1161/CIRCULATIONAHA.106.678342 17606856
10. Tonelli M, Pfeffer MA. Kidney disease and cardiovascular risk. Annu Rev Med. 2007;58:123–39. doi: 10.1146/annurev.med.58.071105.111123 17081079
11. Dong J, Li YJ, Yang ZK, Xu R. Prognostic value of serum von Willebrand factor, but not soluble ICAM and VCAM, for mortality and cardiovascular events is independent of residual renal function in peritoneal dialysis patients. Perit Dial Int. 2014;34(7):706–13. doi: 10.3747/pdi.2012.00004 24584618
12. Wang AY, Lam CW, Wang M, Woo J, Chan IH, Lui SF, et al. Circulating soluble vascular cell adhesion molecule 1: relationships with residual renal function, cardiac hypertrophy, and outcome of peritoneal dialysis patients. Am J Kidney Dis. 2005;45(4):715–29. doi: 10.1053/j.ajkd.2004.12.012 15806475
13. Suliman ME, Qureshi AR, Heimburger O, Lindholm B, Stenvinkel P. Soluble adhesion molecules in end-stage renal disease: a predictor of outcome. Nephrol Dial Transplant. 2006;21(6):1603–10. Epub 2006/02/16. doi: 10.1093/ndt/gfl005 16476720
14. Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, et al. Endothelium structure and function in kidney health and disease. Nature reviews Nephrology. 2019;15(2):87–108. Epub 2019/01/05. doi: 10.1038/s41581-018-0098-z 30607032
15. le Poole CY, Schalkwijk CG, Teerlink T, Valentijn RM, Ter Wee PM, van Ittersum FJ. Higher plasma levels of von Willebrand factor and C-reactive protein during a peritoneal dialysis regimen with less glucose and glucose degradation products. Perit Dial Int. 2013;33(2):208–12. Epub 2013/03/13. doi: 10.3747/pdi.2012.00097 23478374
16. Park SH, Do JY, Kim YH, Lee HY, Kim BS, Shin SK, et al. Effects of neutral pH and low-glucose degradation product-containing peritoneal dialysis fluid on systemic markers of inflammation and endothelial dysfunction: a randomized controlled 1-year follow-up study. Nephrol Dial Transplant. 2012;27(3):1191–9. Epub 2011/08/25. doi: 10.1093/ndt/gfr451 21862454
17. Bueti J, Rush D, Tangri N, Mandelzweig K, Xu Y, Hiebert B, et al. Effect of time on dialysis and renal transplantation on endothelial function: a longitudinal analysis. Transplantation. 2014;98(10):1060–8. Epub 2014/06/01. doi: 10.1097/TP.0000000000000180 24879381
18. Canas L, Iglesias E, Pastor MC, Barallat J, Juega J, Bancu I, et al. Inflammation and oxidation: do they improve after kidney transplantation? Relationship with mortality after transplantation. Int Urol Nephrol. 2017;49(3):533–40. Epub 2016/12/26. doi: 10.1007/s11255-016-1435-4 28013471
19. Simmons EM, Langone A, Sezer MT, Vella JP, Recupero P, Morrow JD, et al. Effect of renal transplantation on biomarkers of inflammation and oxidative stress in end-stage renal disease patients. Transplantation. 2005;79(8):914–9. Epub 2005/04/26. doi: 10.1097/01.tp.0000157773.96534.29 15849543
20. Broers NJH, Martens RJH, Cornelis T, van der Sande FM, Diederen NMP, Hermans MMH, et al. Physical Activity in End-Stage Renal Disease Patients: The Effects of Starting Dialysis in the First 6 Months after the Transition Period. Nephron. 2017;137(1):47–56. Epub 2017/06/08. doi: 10.1159/000476072 28591752
21. Mitsides N, Cornelis T, Broers NJH, Diederen NMP, Brenchley P, van der Sande FM, et al. Cardiovascular and Patient Phenotype of Extended Haemodialysis: A Critical Analysis of Studying a Unique Patient Population. Blood purification. 2018;45(4):356–63. Epub 2018/02/20. doi: 10.1159/000485231 29455200
22. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12. doi: 10.7326/0003-4819-150-9-200905050-00006 19414839
23. Shafi T, Michels WM, Levey AS, Inker LA, Dekker FW, Krediet RT, et al. Estimating residual kidney function in dialysis patients without urine collection. Kidney Int. 2016;89(5):1099–110. doi: 10.1016/j.kint.2015.10.011 26924062
24. Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol. 1999;19(4):972–8. doi: 10.1161/01.atv.19.4.972 10195925
25. von Scholten BJ, Reinhard H, Hansen TW, Schalkwijk CG, Stehouwer C, Parving HH, et al. Markers of inflammation and endothelial dysfunction are associated with incident cardiovascular disease, all-cause mortality, and progression of coronary calcification in type 2 diabetic patients with microalbuminuria. J Diabetes Complications. 2016;30(2):248–55. Epub 2015/12/15. doi: 10.1016/j.jdiacomp.2015.11.005 26651261
26. Malyszko J. Mechanism of endothelial dysfunction in chronic kidney disease. Clin Chim Acta. 2010;411(19–20):1412–20. Epub 2010/07/06. doi: 10.1016/j.cca.2010.06.019 20598675
27. Carrero JJ, Stenvinkel P. Inflammation in end-stage renal disease—what have we learned in 10 years? Semin Dial. 2010;23(5):498–509. Epub 2010/11/03. doi: 10.1111/j.1525-139X.2010.00784.x 21039875
28. Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood. 1994;84(7):2068–101. Epub 1994/10/01. 7522621
29. van Riemsdijk IC, Baan CC, Loonen EH, Knoop CJ, Navarro Betonico G, Niesters HG, et al. T cells activate the tumor necrosis factor-alpha system during hemodialysis, resulting in tachyphylaxis. Kidney Int. 2001;59(3):883–92. doi: 10.1046/j.1523-1755.2001.059003883.x 11231343
30. Lutz J, Menke J, Sollinger D, Schinzel H, Thurmel K. Haemostasis in chronic kidney disease. Nephrol Dial Transplant. 2014;29(1):29–40. Epub 2013/10/18. doi: 10.1093/ndt/gft209 24132242
31. Cobo G, Lindholm B, Stenvinkel P. Chronic inflammation in end-stage renal disease and dialysis. Nephrol Dial Transplant. 2018;33(suppl_3):iii35–iii40. Epub 2018/10/04. doi: 10.1093/ndt/gfy175 30281126
32. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009;6(1):16–26. Epub 2008/11/26. doi: 10.1038/ncpcardio1397 19029993
33. Meeus F, Kourilsky O, Guerin AP, Gaudry C, Marchais SJ, London GM. Pathophysiology of cardiovascular disease in hemodialysis patients. Kidney Int Suppl. 2000;76:S140–7. Epub 2000/08/11. 10936811
34. Padilla J, Simmons GH, Bender SB, Arce-Esquivel AA, Whyte JJ, Laughlin MH. Vascular effects of exercise: endothelial adaptations beyond active muscle beds. Physiology (Bethesda). 2011;26(3):132–45. Epub 2011/06/15. doi: 10.1152/physiol.00052.2010 21670160
35. Gerdemann A, Lemke HD, Nothdurft A, Heidland A, Munch G, Bahner U, et al. Low-molecular but not high-molecular advanced glycation end products (AGEs) are removed by high-flux dialysis. Clin Nephrol. 2000;54(4):276–83. 11076103
36. Stein G, Franke S, Mahiout A, Schneider S, Sperschneider H, Borst S, et al. Influence of dialysis modalities on serum AGE levels in end-stage renal disease patients. Nephrol Dial Transplant. 2001;16(5):999–1008. doi: 10.1093/ndt/16.5.999 11328907
37. Jadoul M, Ueda Y, Yasuda Y, Saito A, Robert A, Ishida N, et al. Influence of hemodialysis membrane type on pentosidine plasma level, a marker of "carbonyl stress". Kidney Int. 1999;55(6):2487–92. doi: 10.1046/j.1523-1755.1999.00468.x 10354298
38. Perry CG, Cleland SJ, Connell JM, Petrie JR, Sattar N. Low grade inflammation is notably suppressed by conventional anti-inflammatory treatment: a randomised crossover trial. Heart. 2004;90(7):804–5. Epub 2004/06/18. doi: 10.1136/hrt.2003.022129 15201258
39. Lamas S. Cellular mechanisms of vascular injury mediated by calcineurin inhibitors. Kidney Int. 2005;68(2):898–907. Epub 2005/07/15. doi: 10.1111/j.1523-1755.2005.00472.x 16014073
40. Meier-Kriesche HU, Schold JD. The impact of pretransplant dialysis on outcomes in renal transplantation. Semin Dial. 2005;18(6):499–504. Epub 2006/01/10. doi: 10.1111/j.1525-139X.2005.00096.x 16398713
41. Dai L, Golembiewska E, Lindholm B, Stenvinkel P. End-Stage Renal Disease, Inflammation and Cardiovascular Outcomes. Contrib Nephrol. 2017;191:32–43. Epub 2017/09/15. doi: 10.1159/000479254 28910789
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Proč jsou nemocnice nepřítelem spánku? A jak to změnit?
- Dlouhodobá ketodieta může poškozovat naše orgány
- „Jednohubky“ z klinického výzkumu – 2024/42
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- MUDr. Jana Horáková: Remise již dosahujeme u více než 80 % pacientů s myastenií