Primary myelofibrosis marrow-derived CD14+/CD34- monocytes induce myelofibrosis-like phenotype in immunodeficient mice and give rise to megakaryocytes


Autoři: Taghi Manshouri aff001;  Srdan Verstovsek aff001;  David M. Harris aff001;  Ivo Veletic aff001;  Xiaorui Zhang aff001;  Sean M. Post aff001;  Carlos E. Bueso-Ramos aff002;  Zeev Estrov aff001
Působiště autorů: Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America aff001;  Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America aff002
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222912

Souhrn

To confirm that neoplastic monocyte-derived collagen- and fibronectin-producing fibrocytes induce bone marrow (BM) fibrosis in primary myelofibrosis (PMF), we injected PMF BM-derived fibrocyte-precursor CD14+/CD34- monocytes into the tail vein of NOD-SCID-γ (NSG) mice. PMF BM-derived CD14+/CD34- monocytes engrafted and induced a PMF-like phenotype with splenomegaly, myeloid hyperplasia with clusters of atypical megakaryocytes, persistence of the JAK2V617F mutation, and BM and spleen fibrosis. As control we used normal human BM-derived CD14+/CD34- monocytes. These monocytes also engrafted and gave rise to normal megakaryocytes that, like PMF CD14+/CD34--derived megakaryocytes, expressed HLA-ABC and human CD42b antigens. Using 2 clonogenic assays we confirmed that PMF and normal BM-derived CD14+/CD34- monocytes give rise to megakaryocyte colony-forming cells, suggesting that a subpopulation BM monocytes harbors megakaryocyte progenitor capacity. Taken together, our data suggest that PMF monocytes induce myelofibrosis-like phenotype in immunodeficient mice and that PMF and normal BM-derived CD14+/CD34- monocytes give rise to megakaryocyte progenitor cells.

Klíčová slova:

Animal sociality – Fibroblasts – Fibrosis – Flow cytometry – Monocytes – Mouse models – Spleen – Megakaryocytes


Zdroje

1. Thiele J, Kvasnicka HM. Grade of bone marrow fibrosis is associated with relevant hematological findings-a clinicopathological study on 865 patients with chronic idiopathic myelofibrosis. Ann Hematol. 2006;85(4):226–32. Epub 2006/01/20. doi: 10.1007/s00277-005-0042-8 16421727.

2. Vener C, Fracchiolla NS, Gianelli U, Calori R, Radaelli F, Iurlo A, et al. Prognostic implications of the European consensus for grading of bone marrow fibrosis in chronic idiopathic myelofibrosis2008 2008-02-15 00:00:00. 1862–5 p.

3. Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel JP, Brunel JP, Mermel CH, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123(22):e123–33. Epub 2014/04/18. doi: 10.1182/blood-2014-02-554634 24740812; PubMed Central PMCID: PMC4041169.

4. Verstovsek S, Mesa RA, Gotlib J, Levy RS, Gupta V, DiPersio JF, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med. 2012;366(9):799–807. doi: 10.1056/NEJMoa1110557 22375971.

5. McLornan DP, Mead AJ, Jackson G, Harrison CN. Allogeneic stem cell transplantation for myelofibrosis in 2012. Br J Haematol. 2012;157(4):413–25. doi: 10.1111/j.1365-2141.2012.09107.x 22463701.

6. Groopman JE. The pathogenesis of myelofibrosis in myeloproliferative disorders. Ann Intern Med. 1980;92(6):857–8. doi: 10.7326/0003-4819-92-6-857 7387029.

7. Vannucchi AM, Bianchi L, Paoletti F, Pancrazzi A, Torre E, Nishikawa M, et al. A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis. Blood. 2005;105(9):3493–501. doi: 10.1182/blood-2004-04-1320 15665119.

8. Verstovsek S, Manshouri T, Pilling D, Bueso-Ramos CE, Newberry KJ, Prijic S, et al. Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis. J Exp Med. 2016;213(9):1723–40. doi: 10.1084/jem.20160283 27481130; PubMed Central PMCID: PMC4995084.

9. Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol Med. 1994;1(1):71–81. PMC2229929. 8790603

10. Reilkoff RA, Bucala R, Herzog EL. Fibrocytes: emerging effector cells in chronic inflammation. Nat Rev Immunol. 2011;11(6):427–35. Epub 2011/05/21. doi: 10.1038/nri2990 21597472; PubMed Central PMCID: PMC3599774.

11. Nowicka M, Krieg C, Weber LM, Hartmann FJ, Guglietta S, Becher B, et al. CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Research. 2017;6:748-. doi: 10.12688/f1000research.11622.3 MEDLINE:28663787. 28663787

12. Hamers AAJ, Dinh HQ, Thomas GD, Marcovecchio P, Blatchley A, Nakao CS, et al. Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arteriosclerosis Thrombosis and Vascular Biology. 2019;39(1):25–36. doi: 10.1161/atvbaha.118.311022 WOS:000454313300007. 30580568

13. Quintas-Cardama A, Manshouri T, Estrov Z, Harris D, Zhang Y, Gaikwad A, et al. Preclinical characterization of atiprimod, a novel JAK2 and JAK3 inhibitor. Invest New Drugs. 2011;29(5):818–26. Epub 2010/04/08. doi: 10.1007/s10637-010-9429-z 20372971; PubMed Central PMCID: PMC4170651.

14. Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica. 2005;90(8):1128–32. Epub 2005/08/05. 16079113. 16079113

15. Stack EC, Wang C, Roman KA, Hoyt CC. Multiplexed immunohistochemistry, imaging, and quantitation: A review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods. 2014;70(1):46–58. doi: 10.1016/j.ymeth.2014.08.016 WOS:000345199200008. 25242720

16. Hopman RK, DiPersio JF. Advances in stem cell mobilization. Blood Rev. 2014;28(1):31–40. https://doi.org/10.1016/j.blre.2014.01.001. doi: 10.1016/j.blre.2014.01.001 24476957

17. Prieto J, Eklund A, Patarroyo M. Regulated expression of integrins and other adhesion molecules during differentiation of monocytes into macrophages. Cellular Immunology. 1994;156(1):191–211. doi: 10.1006/cimm.1994.1164 WOS:A1994NP11700017. 8200035

18. Lundahl J, Skold CM, Hallden G, Hallgren M, Eklund A. Monocyte and neutrophil adhesion to matrix proteins is selectively enhanced in the presence of inflammatory mediators. Scandinavian Journal of Immunology. 1996;44(2):143–9. doi: 10.1046/j.1365-3083.1996.d01-296.x WOS:A1996UZ88300008. 8711427

19. Law HKW, Bol SJL, Palatsides M, Williams NT. Analysis of human megakaryocytic cells using dual-color immunofluorescence labeling. Cytometry. 2000;41(4):308–15. doi: 10.1002/1097-0320(20001201)41:4<308::aid-cyto9>3.0.co;2-n WOS:000165641900009. 11084616

20. Debili N, Robin C, Schiavon V, Letestu R, Pflumio F, Mitjavila-Garcia MT, et al. Different expression of CD41 on human lymphoid and myeloid progenitors from adults and neonates. Blood. 2001;97(7):2023–30. doi: 10.1182/blood.v97.7.2023 WOS:000168516000018. 11264167

21. Husheem M, Nyman JKE, Vaaraniemi J, Vaananen HK, Hentunen TA. Characterization of circulating human osteoclast progenitors: Development of in vitro resorption assay. Calcified Tissue International. 2005;76(3):222–30. doi: 10.1007/s00223-004-0123-z WOS:000228213000007. 15692727

22. Passacquale G, Vamadevan P, Pereira L, Hamid C, Corrigall V, Ferro A. Monocyte-Platelet Interaction Induces a Pro-Inflammatory Phenotype in Circulating Monocytes. Plos One. 2011;6(10). doi: 10.1371/journal.pone.0025595 WOS:000295976000024. 22022418

23. Eaves CJ. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood. 2015;125(17):2605–13. Epub 2015/03/13. doi: 10.1182/blood-2014-12-570200 25762175; PubMed Central PMCID: PMC4440889.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden