DNA vaccine based on conserved HA-peptides induces strong immune response and rapidly clears influenza virus infection from vaccinated pigs
Autoři:
Marta Sisteré-Oró aff001; Sergi López-Serrano aff001; Veljko Veljkovic aff002; Sonia Pina-Pedrero aff001; Júlia Vergara-Alert aff001; Lorena Córdoba aff001; Mónica Pérez-Maillo aff001; Patrícia Pleguezuelos aff001; Enric Vidal aff001; Joaquim Segalés aff003; Jens Nielsen aff005; Anders Fomsgaard aff005; Ayub Darji aff001
Působiště autorů:
IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
aff001; Biomed Protection, Galveston, Texas, United States of America
aff002; UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
aff003; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, Bellaterra (Cerdanyola del Vallès), Barcelona, Spain
aff004; Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej, Copenhagen S, Denmark
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222201
Souhrn
Swine influenza virus (SIVs) infections cause a significant economic impact to the pork industry. Moreover, pigs may act as mixing vessel favoring genome reassortment of diverse influenza viruses. Such an example is the pandemic H1N1 (pH1N1) virus that appeared in 2009, harboring a combination of gene segments from avian, pig and human lineages, which rapidly reached pandemic proportions. In order to confront and prevent these possible emergences as well as antigenic drift phenomena, vaccination remains of vital importance. The present work aimed to evaluate a new DNA influenza vaccine based on distinct conserved HA-peptides fused with flagellin and applied together with Diluvac Forte as adjuvant using a needle-free device (IntraDermal Application of Liquids, IDAL®). Two experimental pig studies were performed to test DNA-vaccine efficacy against SIVs in pigs. In the first experiment, SIV-seronegative pigs were vaccinated with VC4-flagellin DNA and intranasally challenged with a pH1N1. In the second study, VC4-flagellin DNA vaccine was employed in SIV-seropositive animals and challenged intranasally with an H3N2 SIV-isolate. Both experiments demonstrated a reduction in the viral shedding after challenge, suggesting vaccine efficacy against both the H1 and H3 influenza virus subtypes. In addition, the results proved that maternally derived antibodies (MDA) did not constitute an obstacle to the vaccine approach used. Moreover, elevated titers in antibodies both against H1 and H3 proteins in serum and in bronchoalveolar lavage fluids (BALFs) was detected in the vaccinated animals along with a markedly increased mucosal IgA response. Additionally, vaccinated animals developed stronger neutralizing antibodies in BALFs and higher inhibiting hemagglutination titers in sera against both the pH1N1 and H3N2 influenza viruses compared to unvaccinated, challenged-pigs. It is proposed that the described DNA-vaccine formulation could potentially be used as a multivalent vaccine against SIV infections.
Klíčová slova:
Antibodies – Enzyme-linked immunoassays – Fevers – Influenza viruses – Swine – Vaccination and immunization – Vaccines – Flagellin
Zdroje
1. Kothalawala H, Toussaint MJM, Gruys E. An overview of swine influenza. Vet Q. 2006;28: 46–53. Available: http://www.ncbi.nlm.nih.gov/pubmed/16841566 16841566
2. Gorres JP, Lager KM, Kong WP, Royals M, Todd JP, Vincent AL, et al. DNA vaccination elicits protective immune responses against pandemic and classic swine influenza viruses in pigs. Clin Vaccine Immunol. American Society for Microbiology (ASM); 2011;18: 1987–1995. Available: http://www.ncbi.nlm.nih.gov/pubmed/21918118 doi: 10.1128/CVI.05171-11 21918118
3. Martín-Valls GE, Simon-Grifé M, van Boheemen S, de Graaf M, Bestebroer TM, Busquets N, et al. Phylogeny of Spanish swine influenza viruses isolated from respiratory disease outbreaks and evolution of swine influenza virus within an endemically infected farm. Vet Microbiol. Elsevier; 2014;170: 266–277. Available: https://www-sciencedirect-com.are.uab.cat/science/article/pii/S0378113514001217?via%3Dihub doi: 10.1016/j.vetmic.2014.02.031 24685238
4. Alexander DJ, Brown IH. Recent zoonoses caused by influenza A viruses. Rev Sci Tech. 2000;19: 197–225. Available: http://www.ncbi.nlm.nih.gov/pubmed/11189716 11189716
5. Rahn J, Hoffmann D, Harder TC, Beer M. Vaccines against influenza A viruses in poultry and swine: Status and future developments. Vaccine. Elsevier Ltd; 2015;33: 2414–2424. Available: doi: 10.1016/j.vaccine.2015.03.052 25835575
6. World Organisation for Animal Health. Manual of diagnostic tests and vaccines for terrestrial animals [Internet]. 2012. Available: http://www.oie.int/en/standard-setting/terrestrial-manual/access-online/
7. Zimmerman Jeffrey J., Karriker Locke A., Ramirez Alejandro, Schwartz GWS Kent J. Diseases of Swine, 10th Edition. 2012. pp. 557–572.
8. Grund C, Abdelwhab E-SM, Arafa AS, Ziller M, Hassan MK, Aly MM, et al. Highly pathogenic avian influenza virus H5N1 from Egypt escapes vaccine-induced immunity but confers clinical protection against a heterologous clade 2.2.1 Egyptian isolate. Vaccine. Elsevier; 2011;29: 5567–5573. Available: https://www-sciencedirect-com.are.uab.cat/science/article/pii/S0264410X11000223?via%3Dihub doi: 10.1016/j.vaccine.2011.01.006 21244859
9. Connie Leung YH, Luk G, Sia SF, Wu YO, Ho CK, Chow KC, et al. Experimental challenge of chicken vaccinated with commercially available H5 vaccines reveals loss of protection to some highly pathogenic avian influenza H5N1 strains circulating in Hong Kong/China. Vaccine. Elsevier; 2013;31: 3536–3542. Available: https://www-sciencedirect-com.are.uab.cat/science/article/pii/S0264410X13006919?via%3Dihub doi: 10.1016/j.vaccine.2013.05.076 23791547
10. Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol. 1998;72: 7367–7373. 9696833
11. Castrucci MR, Donatelli I, Sidoli L, Barigazzi G, Kawaoka Y, Webster RG. Genetic reassortment between avian and human influenza A viruses in italian pigs. Virology. Academic Press; 1993;193: 503–506. Available: https://www-sciencedirect-com.are.uab.cat/science/article/pii/S0042682283711554?via%3Dihub doi: 10.1006/viro.1993.1155 8438586
12. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature. Nature Publishing Group; 2009;459: 1122–1125. Available: http://www.nature.com/articles/nature08182 doi: 10.1038/nature08182 19516283
13. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science. 2009;325: 197–201. Available: http://www.ncbi.nlm.nih.gov/pubmed/19465683 doi: 10.1126/science.1176225 19465683
14. Busquets N, Segalés J, Córdoba L, Mussá T, Crisci E, Martín-Valls GE, et al. Experimental infection with H1N1 European swine influenza virus protects pigs from an infection with the 2009 pandemic H1N1 human influenza virus. Vet Res. 2010;41: 1–14. doi: 10.1051/vetres/2009049
15. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. Evolution and ecology of influenza A viruses. Microbiol Rev. American Society for Microbiology (ASM); 1992;56: 152–79. Available: http://www.ncbi.nlm.nih.gov/pubmed/1579108 1579108
16. Landolt GA, Olsen CW. Up to new tricks—a review of cross-species transmission of influenza A viruses. Anim Heal Res Rev. 2007;8: 1–21. Available: https://www.cambridge.org/core/product/identifier/S1466252307001272/type/journal_article
17. Simon G, Larsen LE, Dürrwald R, Foni E, Harder T, Van Reeth K, et al. European surveillance network for influenza in pigs: Surveillance programs, diagnostic tools and swine influenza virus subtypes identified in 14 European countries from 2010 to 2013. PLoS One. 2014;9: 1–21.
18. Brown IH. History and epidemiology of swine influenza in Europe. Curr Top Microbiol Immunol. 2011;370: 133–146. Available: http://www.ncbi.nlm.nih.gov/pubmed/22234411
19. Sandbulte MR, Spickler AR, Zaabel PK, Roth JA. Optimal use of vaccines for control of influenza A virus in swine. Vaccines (Basel). 2015;3: 22–73. doi: 10.3390/vaccines3010022 26344946
20. Vincent AL, Perez DR, Rajao D, Anderson TK, Abente EJ, Walia RR, et al. Influenza A virus vaccines for swine. Vet Microbiol. 2017;206: 35–44. Available: http://www.ncbi.nlm.nih.gov/pubmed/27923501 doi: 10.1016/j.vetmic.2016.11.026 27923501
21. Bikour MH, Cornaglia E, Elazhary Y. Evaluation of a protective immunity induced by an inactivated influenza H3N2 vaccine after an intratracheal challenge of pigs. Can J Vet Res. 1996;60: 312–4. Available: http://www.ncbi.nlm.nih.gov/pubmed/8904668 8904668
22. Dürrwald R, Krumbholz A, Baumgarte S, Schlegel M, Vahlenkamp TW, Selbitz HJ, et al. Swine influenza A vaccines, pandemic (H1N1) 2009 virus, and cross-reactivity. Emerg Infect Dis. 2010;16: 1029–1030. Available: http://www.ncbi.nlm.nih.gov/pubmed/20507767 doi: 10.3201/eid1606.100138 20507767
23. Ma W, Richt JA. Swine influenza vaccines: current status and future perspectives. Anim Health Res Rev. 2010;11: 81–96. doi: 10.1017/S146625231000006X 20462470
24. Vincent AL, Ciacci-Zanella JR, Lorusso A, Gauger PC, Zanella EL, Kehrli ME, et al. Efficacy of inactivated swine influenza virus vaccines against the 2009 A/H1N1 influenza virus in pigs. Vaccine. Elsevier Ltd; 2010;28: 2782–2787. Available: doi: 10.1016/j.vaccine.2010.01.049 20132919
25. Van Reeth K, Gregory V, Hay A, Pensaert M. Protection against a European H1N2 swine influenza virus in pigs previously infected with H1N1 and/or H3N2 subtypes. Vaccine. 2003;21: 1375–1381. doi: 10.1016/s0264-410x(02)00688-6 12615433
26. Van Reeth K, Brown I, Essen S, Pensaert M. Genetic relationships, serological cross-reaction and cross-protection between H1N2 and other influenza a virus subtypes endemic in European pigs. Virus Res. 2004;103: 115–124. doi: 10.1016/j.virusres.2004.02.023 15163499
27. Kitikoon P, Nilubol D, Erickson BJ, Janke BH, Hoover TC, Sornsen SA, et al. The immune response and maternal antibody interference to a heterologous H1N1 swine influenza virus infection following vaccination. Vet Immunol Immunopathol. 2006;112: 117–128. doi: 10.1016/j.vetimm.2006.02.008 16621020
28. Markowska-Daniel I, Pomorska-Mól M, Pejsak Z. The influence of age and maternal antibodies on the postvaccinal response against swine influenza viruses in pigs. Vet Immunol Immunopathol. Elsevier B.V.; 2011;142: 81–86. Available: doi: 10.1016/j.vetimm.2011.03.019 21501880
29. Vergara-Alert J, Argilaguet JM, Busquets N, Ballester M, Martín-Valls GE, Rivas R, et al. Conserved synthetic peptides from the hemagglutinin of influenza viruses induce broad humoral and T-cell responses in a pig model. PLoS One. 2012;7.
30. Margine I, Krammer F, Hai R, Heaton NS, Tan GS, Andrews SA, et al. Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza A viruses. J Virol. 2013;87: 10435–10446. Available: http://jvi.asm.org/content/87/19/10435%5Cnhttp://jvi.asm.org/content/87/19/10435.abstract?etoc%5Cnhttp://jvi.asm.org/content/87/19/10435.full.pdf%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/23903831 doi: 10.1128/JVI.01715-13 23903831
31. Wang TT, Tan GS, Hai R, Pica N, Ngai L, Ekiert DC, et al. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc Natl Acad Sci U S A. 2010;107: 18979–18984. doi: 10.1073/pnas.1013387107 20956293
32. Ma JH, Yang FR, Yu H, Zhou YJ, Li GX, Huang M, et al. An M2e-based synthetic peptide vaccine for influenza A virus confers heterosubtypic protection from lethal virus challenge. Virol J. Virology Journal; 2013;10: 227. Available: http://www.virologyj.com/content/10/1/227 doi: 10.1186/1743-422X-10-227 23834899
33. Krammer F, Pica N, Hai R, Tan GS, Palese P. Hemagglutinin stalk-reactive antibodies are boosted following sequential infection with seasonal and pandemic H1N1 influenza virus in mice. J Virol. American Society for Microbiology (ASM); 2012;86: 10302–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/22787225 doi: 10.1128/JVI.01336-12 22787225
34. Veljkovic V, Glisic S, Veljkovic N, Bojic T, Dietrich U, Perovic VR, et al. Influenza vaccine as prevention for cardiovascular diseases: possible molecular mechanism. Vaccine. 2014;32: 6569–75. Available: https://linkinghub.elsevier.com/retrieve/pii/S0264410X14009335 doi: 10.1016/j.vaccine.2014.07.007 25045818
35. Borggren M, Nielsen J, Bragstad K, Karlsson I, Krog JS, Williams JA, et al. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans. Hum Vaccines Immunother. 2015;11: 1983–1990.
36. Karlsson I, Borggren M, Rosenstierne MW, Trebbien R, Williams JA, Vidal E, et al. Protective effect of a polyvalent influenza DNA vaccine in pigs. Vet Immunol Immunopathol. 2018;195: 25–32. Available: http://linkinghub.elsevier.com/retrieve/pii/S0165242717304099 doi: 10.1016/j.vetimm.2017.11.007 29249314
37. Veljkovic V, Niman HL, Glisic S, Veljkovic N, Perovic V, Muller CP. Identification of hemagglutinin structural domain and polymorphisms which may modulate swine H1N1 interactions with human receptor. BMC Struct Biol. 2009;9: 62. Available: doi: 10.1186/1472-6807-9-62 19785758
38. Veljkovic V, Veljkovic N, Muller CP, Müller S, Glisic S, Perovic V, et al. Characterization of conserved properties of hemagglutinin of H5N1 and human influenza viruses: possible consequences for therapy and infection control. BMC Struct Biol. 2009;9: 21. doi: 10.1186/1472-6807-9-21 19351406
39. Colombatti A, Doliana R, Veljkovic V, Veljkovic N, Glisic S, Perovic V. Peptide agonists of toll-like receptor 5 ligand and methods of use [Internet]. WO/2015/166010, 2015. WO/2015/166010
40. Galindo-Cardiel I, Ballester M, Solanes D, Nofrarías M, López-Soria S, Argilaguet JM, et al. Standardization of pathological investigations in the framework of experimental ASFV infections. Virus Res. Elsevier; 2013;173: 180–190. Available: https://www-sciencedirect-com.are.uab.cat/science/article/pii/S0168170212004996 doi: 10.1016/j.virusres.2012.12.018 23313935
41. Nielsen J, Bøtner A, Tingstedt J, Aasted B, Johnsen C., Riber U, et al. In utero infection with porcine reproductive and respiratory syndrome virus modulates leukocyte subpopulations in peripheral blood and bronchoalveolar fluid of surviving piglets. Vet Immunol Immunopathol. Elsevier; 2003;93: 135–151. Available: https://www-sciencedirect-com.are.uab.cat/science/article/pii/S0165242703000680?via%3Dihub doi: 10.1016/s0165-2427(03)00068-0 12814699
42. Sibila M, Aragón V, Fraile L, Segalés J. Comparison of four lung scoring systems for the assessment of the pathological outcomes derived from Actinobacillus pleuropneumoniae experimental infections. BMC Vet Res. BioMed Central; 2014;10: 165. Available: http://www.ncbi.nlm.nih.gov/pubmed/25038822 doi: 10.1186/1746-6148-10-165 25038822
43. Detmer SE, Gunvaldsen RE, Harding JC. Comparison of influenza A virus infection in high- and low-birth-weight pigs using morphometric analysis. Influenza Other Respi Viruses. 2013;7 Suppl 4: 2–9. Available: http://doi.wiley.com/10.1111/irv.12199
44. Reed LJ, Muench H. A simple method of estimating fifty per cent endpoint. Am J Hyg. 1938;27: 493–497.
45. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, et al. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40: 3256–3260. doi: 10.1128/JCM.40.9.3256-3260.2002 12202562
46. Olvera A, Pina S, Pérez-Simó M, Aragón V, Segalés J, Bensaid A. Immunogenicity and protection against Haemophilus parasuis infection after vaccination with recombinant virulence associated trimeric autotransporters (VtaA). Vaccine. Elsevier; 2011;29: 2797–2802. Available: https://www-sciencedirect-com.are.uab.cat/science/article/pii/S0264410X11001770?via%3Dihub doi: 10.1016/j.vaccine.2011.01.105 21320547
47. Wijnans L, Voordouw B. A review of the changes to the licensing of influenza vaccines in Europe. Influenza Other Respi Viruses. Wiley-Blackwell; 2016;10: 2–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/26439108
48. Wood JM, Levandowski RA. The influenza vaccine licensing process. Vaccine. Elsevier; 2003;21: 1786–1788. Available: https://www.sciencedirect.com/science/article/pii/S0264410X03000732?via%3Dihub doi: 10.1016/s0264-410x(03)00073-2 12686095
49. The European agency for the evaluation of medical products. Note for guidence on harmonisation of requirements for influenza vaccines [Internet]. 1997 p. 19. Available: https://www.ema.europa.eu/en/harmonisation-requirements-influenza-vaccines
50. Department of health and human services. Food and drug administration. Center for biologics evaluation and research. Guidance for industry: Clinical data needed to support the licensure of seasonal inactivated influenza vaccines [Internet]. 2007. Available: https://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Vaccines/UCM091985.pdf
51. Marcelin G, DuBois R, Rubrum A, Russell CJ, McElhaney JE, Webby RJ. A contributing role for anti-neuraminidase antibodies on immunity to pandemic H1N1 2009 influenza a virus. PLoS One. 2011;6.
52. Waffarn EE, Baumgarth N. Protective B cell responses to flu-no fluke! J Immunol. American Association of Immunologists; 2011;186: 3823–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/21422252
53. Huleatt JW, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A, et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin. Vaccine. 2008;26: 201–214. Available: https://ac-els-cdn-com.are.uab.cat/S0264410X0701256X/1-s2.0-S0264410X0701256X-main.pdf?_tid=5a417b66-c2a7-4b41-9691-6458f6ca24b4&acdnat=1539249338_b6c98425e9a7c6a2a6571dbb944df61d doi: 10.1016/j.vaccine.2007.10.062 18063235
54. Honko AN, Sriranganathan N, Lees CJ, Mizel SB. Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis. Infect Immun. 2006;74: 1113–1120. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1360354/pdf/1506-05.pdf doi: 10.1128/IAI.74.2.1113-1120.2006 16428759
55. McDonald WF, Huleatt JW, Foellmer HG, Hewitt D, Tang J, Desai P, et al. A West Nile virus recombinant protein vaccine that coactivates innate and adaptive immunity. J Infect Dis. Oxford University Press; 2007;195: 1607–1617. Available: doi: 10.1086/517613 17471430
56. Delaney KN, Phipps JP, Johnson JB, Mizel SB. A recombinant flagellin-poxvirus fusion protein vaccine elicits complement-dependent protection against respiratory challenge with vaccinia virus in mice. Viral Immunol. Mary Ann Liebert, Inc.; 2010;23: 201–10. Available: http://www.ncbi.nlm.nih.gov/pubmed/20374000
57. Weimer ET, Ervin SE, Wozniak DJ, Mizel SB. Immunization of young African green monkeys with OprF epitope 8-OprI-type A- and B-flagellin fusion proteins promotes the production of protective antibodies against nonmucoid Pseudomonas aeruginosa. Vaccine. Elsevier; 2009;27: 6762–6769. Available: https://www-sciencedirect-com.are.uab.cat/science/article/pii/S0264410X09012754?via%3Dihub doi: 10.1016/j.vaccine.2009.08.080 19744586
58. Farina C, Theil D, Semlinger B, Hohlfeld R, Meinl E. Distinct responses of monocytes to Toll-like receptor ligands and inflammatory cytokines. Int Immunol. Oxford University Press; 2004;16: 799–809. Available: doi: 10.1093/intimm/dxh083 15096475
59. Caron G, Duluc D, Frémaux I, Jeannin P, David C, Gascan H, et al. Direct stimulation of human T cells via TLR5 and TLR7/8: flagellin and R-848 up-regulate proliferation and IFN-gamma production by memory CD4+ T cells. J Immunol. American Association of Immunologists; 2005;175: 1551–7. Available: http://www.ncbi.nlm.nih.gov/pubmed/16034093 doi: 10.4049/jimmunol.175.3.1551 16034093
60. Song L, Zhang Y, Yun NE, Poussard AL, Smith JN, Smith JK, et al. Superior efficacy of a recombinant flagellin:H5N1 HA globular head vaccine is determined by the placement of the globular head within flagellin. 2009;27: 5875–5884. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3571653/pdf/nihms-440739.pdf doi: 10.1016/j.vaccine.2009.07.060 19654064
61. Wang BZ, Xu R, Quan FS, Kang SM, Wang L, Compans RW. Intranasal immunization with influenza VLPs incorporating membrane-anchored flagellin induces strong heterosubtypic protection. PLoS One. 2010;5.
62. Liu G, Tarbet B, Song L, Reiserova L, Weaver B, Chen Y, et al. Immunogenicity and efficacy of flagellin-fused vaccine candidates targeting 2009 pandemic H1N1 influenza in mice. PLoS One. 2011;6.
63. Liu G, Song L, Reiserova L, Trivedi U, Li H, Liu X, et al. Flagellin-HA vaccines protect ferrets and mice against H5N1 highly pathogenic avian influenza virus (HPAIV) infections. Vaccine. Elsevier Ltd; 2012;30: 6833–6838. Available: http://dx.doi.org/10.1016/j.vaccine.2012.09.013
64. Tsybalova LM, Stepanova LA, Shuklina MA, Mardanova ES, Kotlyarov RY, Potapchuk M V, et al. Combination of M2e peptide with stalk HA epitopes of influenza A virus enhances protective properties of recombinant vaccine. PLoS One. 2018;13. Available: https://doi.org/10.1371/journal.pone.0201429
65. Olsen CW. DNA vaccination against influenza viruses: A review with emphasis on equine and swine influenza. Vet Microbiol. 2000;74: 149–164. doi: 10.1016/s0378-1135(00)00175-9 10799787
66. Wang S, Zhang C, Zhang L, Li J, Huang Z, Lu S. The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection, electroporation and gene gun methods. Vaccine. 2008;26: 2100–2110. doi: 10.1016/j.vaccine.2008.02.033 18378365
67. Raz E, Carson DA, Parker SE, Parr TB, Abai AM, Aichinger G, et al. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci U S A. 1994;91: 9519–23. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=44844&tool=pmcentrez&rendertype=abstract doi: 10.1073/pnas.91.20.9519 7937799
68. Young F, Marra F. A systematic review of intradermal influenza vaccines. Vaccine. Elsevier Ltd; 2011;29: 8788–8801. Available: doi: 10.1016/j.vaccine.2011.09.077 21968444
69. Borggren M, Nielsen J, Karlsson I, Dalgaard TS, Trebbien R, Williams JA, et al. A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs. Vaccine. Elsevier Ltd; 2016;34: 3634–3640. Available: doi: 10.1016/j.vaccine.2016.05.030 27211039
70. Brookes SM, Núñez A, Choudhury B, Matrosovich M, Essen SC. Replication, pathogenesis and transmission of pandemic (H1N1) 2009 virus in non-immune pigs. PLoS One. 2009;5. Available: www.plosone.org
71. Lange E, Kalthoff D, Blohm U, Teifke JP, Breithaupt A, Maresch C, et al. Pathogenesis and transmission of the novel swine-origin influenza virus A/H1N1 after experimental infection of pigs. J Gen Virol. Microbiology Society; 2009;90: 2119–2123. Available: http://jgv.microbiologyresearch.org/content/journal/jgv/10.1099/vir.0.014480-0 19592456
72. Renegar KB, Small PA, Boykins LG, Wright PF. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J Immunol. 2004;173: 1978–1986. Available: http://www.jimmunol.org/content/173/3/1978http://www.jimmunol.org/content/173/3/1978.full#ref-list-1 doi: 10.4049/jimmunol.173.3.1978 15265932
73. He W, Mullarkey CE, Duty JA, Moran TM, Palese P, Miller MS. Broadly neutralizing anti-influenza virus antibodies: enhancement of neutralizing potency in polyclonal mixtures and IgA backbones. J Virol. American Society for Microbiology (ASM); 2015;89: 3610–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/25589655 doi: 10.1128/JVI.03099-14 25589655
74. Hervé PL, Raliou M, Bourdieu C, Dubuquoy C, Petit-Camurdan A, Bertho N, et al. A novel subnucleocapsid nanoplatform for mucosal vaccination against influenza virus that targets the ectodomain of matrix protein 2. J Virol. 2014;88: 325–338. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911713/pdf/zjv325.pdf doi: 10.1128/JVI.01141-13 24155388
75. Shim BS, Choi YK, Yun CH, Lee EG, Jeon YS, Park SM, et al. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza. PLoS One. Public Library of Science; 2011;6. Available: http://www.ncbi.nlm.nih.gov/pubmed/22140491
76. Okutani M, Tsukahara T, Kato Y, Fukuta K, Inoue R. Gene expression profiles of CD4/CD8 double-positive T cells in porcine peripheral blood. Anim Sci J. Wiley/Blackwell (10.1111); 2018;89: 979–987. Available: doi: 10.1111/asj.13021 29740910
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Skotská studie upřesnila zdravotní benefity aktivního cestování za prací a studiem
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?