Evolutionary analysis of six chloroplast genomes from three Persea americana ecological races: Insights into sequence divergences and phylogenetic relationships


Autoři: Yu Ge aff001;  Xiangshu Dong aff002;  Bin Wu aff001;  Nan Wang aff001;  Di Chen aff001;  Haihong Chen aff003;  Minghong Zou aff004;  Zining Xu aff001;  Lin Tan aff001;  Rulin Zhan aff001
Působiště autorů: Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China aff001;  College of Agriculture, Yunnan University, Yunnan, China aff002;  College of Agriculture, Guangxi Vocational and Technical College, Nanning, China aff003;  South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0221827

Souhrn

Chloroplasts significantly influence species phylogenies because of their maternal inheritance and the moderate evolutionary rate of their genomes. Avocado, which is a member of the family Lauraceae, has received considerable attention from botanists, likely because of its position as a basal angiosperm. However, there is relatively little avocado genomic information currently available. In this study, six complete avocado chloroplast genomes from three ecological races were assembled to examine the sequence diversity among the three avocado ecological races. A comparative genomic analysis revealed that 515 simple sequence repeat loci and 176 repeats belonging to four other types were polymorphic across the six chloroplast genomes. Three highly variable regions (trnC-GCA-petN, petN-psbM, and petA-psbJ) were identified as highly informative markers. A phylogenetic analysis based on 79 common protein-coding genes indicated that the six examined avocado accessions from three ecological races form a monophyletic clade. The other three genera belonging to the Persea group clustered to form a sister clade with a high bootstrap value. These chloroplast genomes provide important genetic information for future attempts at identifying avocado races and for the related biological research.

Klíčová slova:

Biology and life sciences – Genetics – Genomics – Plant genomics – Plant genomes – Chloroplast genome – Genome complexity – Pseudogenes – Comparative genomics – Plant genetics – Gene types – Bioengineering – Biotechnology – Plant biotechnology – Plant science – Evolutionary biology – Evolutionary systematics – Phylogenetics – Phylogenetic analysis – Taxonomy – Organisms – Eukaryota – Plants – Flowering plants – Fruits – Computational biology – Engineering and technology – Computer and information sciences – Data management – People and places – Population groupings – Ethnicities – Latin American people – Mexican people


Zdroje

1. Schaffer B, Wolstenholme BN, Whiley AW. The Avocado: Botany, Production and Uses. 2nd ed. Croydon: CPI Group (UK) Ltd; 2012.

2. Chanderbali AS, Albert VA, Ashworth VETM, Clegg MT, Litz RE, Soltis DE, et al. Persea americana (avocado): bringing ancient flowers to fruit in the genomics era. BioEssays. 2008; 30(4): 386–396. doi: 10.1002/bies.20721 18348249

3. Chanderbali AS, Albert VA, Leebens-MackdJ, Altmane NS, Soltis DE, Soltis PS. Transcriptional signatures of ancient floral developmental genetics in avocado (Persea americana; Lauraceae). P NATL ACAD SCI USA. 2009;106(22):8929–8934.

4. Kopp LE. A taxonomic revision of the genus Persea in the western hemisphere (Persea-Lauraceae). Mem N Y Bot Gard.1966; 14:1–120.

5. Williams LO. The avocado, a synopsis of the genus Persea, subg. Persea. Econ Bot. 1977; 31(3): 315–320.

6. Schaffer B, Wolstenholme BN. The Avocado: Botany, Production and Uses. CAB International: Wallingford; 2002.

7. Van der Werff H. A synopsis of Persea (Lauraceae) in Central America. Novon. 2002; 12(4):575–586.

8. Galindo-Tovar ME, Ogata-Aguilar N, Arzate-Fernandez AM. Some aspects of avocado (Perseaamericana Mill.) diversity and domestication in Mesoamerica. Genet Resour Crop Evol. 2008; 55(3): 441–450.

9. Gross-German E, Viruel MA. Molecular characterization of avocado germplasm with a new set of SSR and EST-SSR markers: genetic diversity, population structure, and identification of race-specific markers in a group of cultivated genotypes. Tree Genet Genomes. 2013; 9(2):539–555.

10. Mhameed S, Sharon D, Kaufman D, Lahav E, Hillel J, Degani C, et al. Genetic relationships within avocado (Persea americana Mill.) cultivars and between Persea species. Theor Appl Genet.1997; 94(2):279–286.

11. Fiedler J, Bufler G, Bangerth F. Genetic relationships of avocado (Persea americana Mill.) using RAPD markers. Euphytica.1998; 101(2):249–255.

12. Furnier GR, Cummings MP, Clegg MT. Evolution of the avocados as revealed by DNA restriction site variation. J Hered.1990; 81(3):183–188.

13. Ashworth VETM Clegg MT. Microsatellite markers in avocado (Persea americana Mill.). genealogical relationships among cultivated avocado genotypes. J Hered. 2003; 94(5):407–415. doi: 10.1093/jhered/esg076 14557394

14. Schnell RJ, Brown JS, Olano CT, Power EJ, Krol CA, Kuhn DN, et al. Evaluation of avocado germplasm using microsatellite markers. J Amer Soc Hort Sci.2003;128:881–889.

15. McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol. 2013; 66(2):526–538. doi: 10.1016/j.ympev.2011.12.007 22197804

16. Daniell H, Lin CS, Yu M, Chang WJ. Chloroplast genomes, diversity, evolution, and applications in genetic engineering. Genome Biol. 2016; 17:134. doi: 10.1186/s13059-016-1004-2 27339192

17. Zhao P, Zhou HJ, Potter D, Hu YH, Feng XJ, Dang M, et al. Population genetics, phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes, transcriptomes, and genotyping-by-sequencing (GBS). Mol Phylogenet Evol. 2018; 126:250–265. doi: 10.1016/j.ympev.2018.04.014 29679714

18. Ge Y, Zhang T, Wu B, Tan L, Ma FN, Zou MH, et al. Genome-wide assessment of avocado germplasm determined from specific length amplified fragment sequencing and transcriptomes: population structure, genetic diversity, identification, and application of race-specific markers. Genes. 2019; 10:215.

19. Ge Y, Tan L, Wu B, Wang T, Zhang T, Chen H, et al. Transcriptome sequencing of different avocado ecotypes: de novo transcriptome assembly, annotation, identification and validation of EST-SSR markers. Forests. 2019; 10:411.

20. Liu ML, Fan WB, Wang N, Dong PB, Zhang TT, Yue M, et al. Evolutionary analysis of plastid genomes of seven Lonicera L. species: implications for sequence divergence and phylogenetic relationships. Int J Mol Sci. 2018; 19:4039.

21. He D, Gichira AW, Li Z, Nzei JM, Guo Y, Wang Q, et al. Intergeneric relationships within the early-diverging angiosperm family Nymphaeaceae based on chloroplast phylogenomics. Int J Mol Sci.2018; 19:3780.

22. Huang J, Chen R, Li X. Comparative analysis of the complete chloroplast genome of four known Ziziphus species. Genes. 2017; 8:340.

23. D’Agostino N, Tamburino R, Cantarella C, De Carluccio V, Sannino L, Cozzolino S, et al. The complete plastome sequences of eleven Capsicum genotypes: insights into DNA variation and molecular evolution. Genes. 2018; 9:503.

24. Jeon JH, Kim SC. Comparative analysis of the complete chloroplast genome sequences of three closely related east-asian wild roses (Rosa sect. Synstylae; Rosaceae). Genes. 2019; 10:23.

25. Zhou T, Wang J, Jia Y, Li W, Xu F, Wang X. Comparative chloroplast genome analyses of species in Gentiana section Cruciata (Gentianaceae) and the development of authentication markers. Int J Mol Sci. 2018; 19:1962.

26. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9: 357–359. doi: 10.1038/nmeth.1923 22388286

27. Coil D, Jospin G, Darling AE. A5-MiSeq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics. 2014; 31(4):587–589. doi: 10.1093/bioinformatics/btu661 25338718

28. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J Comput Bio. 2012;19(5):455–477.

29. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for comparing large genomes. Genome Bio. 2004; 5:R12.

30. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014; 9:e112963. doi: 10.1371/journal.pone.0112963 25409509

31. Wyman SK, Jansen RK, Boore JL. Automatic annotation of organellar genomes with DOGMA. Bioinformatics. 2004; 20(17):3252–3255. doi: 10.1093/bioinformatics/bth352 15180927

32. Laslett D, Canback B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 2004; 32(1):11–16. doi: 10.1093/nar/gkh152 14704338

33. Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, et al. GeSeq—versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017; 45(W1):6–11.

34. Lohse M, Drechsel O, Bock R. Organellar Genome DRAW (OGDRAW): A tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet. 2007; 52(5–6): 267–274. doi: 10.1007/s00294-007-0161-y 17957369

35. Sharp PM, Li WH. The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res.1987; 15(3):1281–1295. doi: 10.1093/nar/15.3.1281 3547335

36. Beier S, Thiel T, Münch T, Scholz U, Mascher M. MISA-web: A web server for microsatellite prediction. Bioinformatics. 2017; 33(16):2583–2585. doi: 10.1093/bioinformatics/btx198 28398459

37. Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R. Reputer: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001; 29(22): 4633–4642. doi: 10.1093/nar/29.22.4633 11713313

38. Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I. VISTA: Computational tools for comparative genomics. Nucleic Acids Res. 2004; 32(2):273–279.

39. Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009; 25(11):1451–1452. doi: 10.1093/bioinformatics/btp187 19346325

40. Excoffier L, Laval G, Schneider S. Arlequin ver. 3.0: An intergrated software package for population genetics data analysis. Evol. Bioinform. 2005; 1:47–50.

41. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994; 22(22):4673–4680. doi: 10.1093/nar/22.22.4673 7984417

42. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013; 30(12):2725–2729. doi: 10.1093/molbev/mst197 24132122

43. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: Effificient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012; 61(3):539–542. doi: 10.1093/sysbio/sys029 22357727

44. Song Y, Yao X, Tan YH, Gan Y, Corlett RT. Complete chloroplast genome sequence of the avocado: gene organization, comparative analysis, and phylogenetic relationships with other Lauraceae. Can J For Res. 2016; 46(11):1293–1301.

45. Song Y, Yao X, Tan YH, Gan Y, Yang JB, Corlett RT. Comparative analysis of complete chloroplast genome sequences of two subtropical trees, Phoebe sheareri and Phoebe omeiensis (Lauraceae). Tree Genet Genomes. 2017; 13:120.

46. Song Y, Yao X, Liu B, Tan YH, Corlett RT. Complete plastid genome sequences of three tropical Alseodaphne trees in the family Lauraceae. Holzforschung.2017; 72(4):337.

47. Song Y, Dong W, Liu B, Xu C, Yao X, Gao J, Corlett RT. Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansaein the family Lauraceae. Front Plant Sci. 2015; 6:662. doi: 10.3389/fpls.2015.00662 26379689

48. Meng J, Li XP, Li HT, Yang JB, Wang H, He J. Comparative analysis of the complete chloroplast genomes of four Aconitum medicinal species. Molecules. 2018; 23:1015.

49. Poliseno L, Salmena L, Zhang JW, Carver B, Haveman WJ, Pandolfifi PP. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature. 2010; 465:1033–1038. doi: 10.1038/nature09144 20577206

50. Lu XJ, Gao AM, Ji LJ, Xu J. Pseudogene in cancer: Real functions and promising signature. J Med Genet. 2015; 52(1):17–24. doi: 10.1136/jmedgenet-2014-102785 25391452

51. Prade VM, Gundlach H, Twardziok S, Chapman B, Tan C, Langridge P, et al. The pseudogenes of barley. Plant J. 2018; 93(3):502. doi: 10.1111/tpj.13794 29205595

52. Chi XF, Wang JL, Gao QB, Zhang FQ, Chen SL. The complete chloroplast genomes of two Lancea species with comparative analysis. Molecules. 2018; 23:602.

53. Zhou JG, Cui YX, Chen XL, Li Y, Xu ZC, Duan BZ, et al. Complete chloroplast genomes of Papaver rhoeas and Papaver orientale: molecular structures, comparative analysis, and phylogenetic analysis. Molecules. 2018; 23:437.

54. Li W, Zhang C, Guo X, Liu Q, Wang K. Complete chloroplast genome of Camellia japonica genome structures, comparative and phylogenetic analysis. PLoS ONE. 2019; 14(5):e0216645. doi: 10.1371/journal.pone.0216645 31071159

55. Cheon K-S, Kim K-A, Kwak M, Lee B, Yoo K-O. The complete chloroplast genome sequences of four Viola species (Violaceae) and comparative analyses with its congeneric species. PLoS ONE. 2019; 14(3):e0214162. doi: 10.1371/journal.pone.0214162 30893374

56. Cavalier-Smith T. Chloroplast evolution: Secondary symbiogenesis and multiple losses. Curr Biol CB. 2002; 12:R62. doi: 10.1016/s0960-9822(01)00675-3 11818081

57. Wu Y, Liu F, Yang DG, Li W, Zhou XJ, Pei XY, et al. Comparative chloroplast genomics of Gossypium species: Insights into repeat sequence variations and phylogeny. Front Plant Sci. 2018; 9:376. doi: 10.3389/fpls.2018.00376 29619041

58. Jiang L, Li MH, Zhao FX, Chu SS, Zha LP, Xu T, et al. Molecular identification and taxonomic implication of herbal species in genus Corydalis (Papaveraceae). Molecules. 2018; 23:1393.

59. Li L, Li J, Rohwer JG, Van Der Werff H, Wang ZH, Li HW. Molecular phylogenetic analysis of the Persea group (Lauraceae) and its biogeographic implications on the evolution of tropical and subtropical amphi-pacific disjunctions. Am J Bot. 2011; 98(9):1520–1536. doi: 10.3732/ajb.1100006 21860056

60. Nie ZL, Wen J, Sun H. Phylogeny and biogeography of Sassafras (Lauraceae) disjunct between eastern Asia and eastern North America. Pl Syst Evol. 2007; 267(1–4):191–203.

61. Huang JK, Li L, Van der Werff H, Li HW, Rohwer JG, Crayn DM, et al. Origins and evolution of cinnamon and camphor: A phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae). Mol Phylogenet Evol. 2016; 96: 33–44. doi: 10.1016/j.ympev.2015.12.007 26718058

62. Song Y, Yu WB, Tan YH, Liu B, Yao X, Jin JJ, et al. Evolutionary comparisons of the chloroplast genome in Lauraceae and insights into loss events in the Magnoliids. Genome Biol Evol. 2017; 9(9):2354–2364. doi: 10.1093/gbe/evx180 28957463


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden