A high-density exome capture genotype-by-sequencing panel for forestry breeding in Pinus radiata


Autoři: Emily Telfer aff001;  Natalie Graham aff001;  Lucy Macdonald aff001;  Yongjun Li aff001;  Jaroslav Klápště aff001;  Marcio Resende, Jr aff002;  Leandro Gomide Neves aff003;  Heidi Dungey aff001;  Phillip Wilcox aff004
Působiště autorů: New Zealand Forest Research Institute LTD. trading as Scion, Rotorua, New Zealand aff001;  Horticultural Sciences, University of Florida, Gainesville, FL, United States of America aff002;  RAPiD Genomics LLC, Gainesville, FL, United States of America aff003;  Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand aff004
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222640

Souhrn

Development of genome-wide resources for application in genomic selection or genome-wide association studies, in the absence of full reference genomes, present a challenge to the forestry industry, where longer breeding cycles could benefit from the accelerated selection possible through marker-based breeding value predictions. In particular, large conifer megagenomes require a strategy to reduce complexity, whilst ensuring genome-wide coverage is achieved. Using a transcriptome-based reference template, we have successfully developed a high density exome capture genotype-by-sequencing panel for radiata pine (Pinus radiata D.Don), capable of capturing in excess of 80,000 single nucleotide polymorphism (SNP) markers with a minor allele frequency above 0.03 in the population tested. This represents approximately 29,000 gene models from a core set of 48,914 probes. A set of 704 SNP markers capable of pedigree reconstruction and differentiating individual genotypes were tested within two full-sib mapping populations. While as few as 70 markers could reconstruct parentage in almost all cases, the impact of missing genotypes was noticeable in several offspring. Therefore, 60 sets of 110 randomly selected SNP markers were compared for both parentage reconstruction and clone differentiation. The performance in parentage reconstruction showed little variation over 60 iterations. However, there was notable variation in discriminatory power between closely related individuals, indicating a higher density SNP marker panel may be required to elucidate hidden relationships in complex pedigrees.

Klíčová slova:

Alleles – Genotyping – Molecular genetics – Phylogenetic analysis – Pines – Transcriptome analysis – Variant genotypes


Zdroje

1. Burdon R, Libby W, Brown A. Domestication of Radiata Pine. vol. 83. Springer; 2017.

2. Forest Owners Association. Facts & Figures; 2016.

3. Dungey H, Shula B, Suontama M, Li Y, Low C, Stovold T. Quantitative genetics and developments in Scion’s tree breeding programmes. NZ Journal of Forestry. 2015;60(1):12–16.

4. Neale DB, Kremer A. Forest tree genomics: growing resources and applications. Nature Reviews Genetics. 2011;12(2):111–122. doi: 10.1038/nrg2931 21245829

5. Meuwissen T, Hayes B, Goddard M. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157(4):1819–1829. 11290733

6. Grattapaglia D, Resende MD. Genomic selection in forest tree breeding. Tree Genetics & Genomes. 2011;7(2):241–255. doi: 10.1007/s11295-010-0328-4

7. Isik F. Genomic selection in forest tree breeding: the concept and an outlook to the future. New Forests. 2014;45(3):379–401. doi: 10.1007/s11056-014-9422-z

8. Klápště J, Suontama M, Dungey HS, Telfer EJ, Graham NJ, Low CB, et al. Effect of Hidden Relatedness on Single-Step Genetic Evaluation in an Advanced Open-Pollinated Breeding Program. Journal of Heredity. 2018;109(7):802–810. doi: 10.1093/jhered/esy051 30285150

9. Campbell MR, Vu NV, LaGrange AP, Hardy RS, Ross TJ, Narum SR. Development and Application of Single-Nucleotide Polymorphism (SNP) Genetic Markers for Conservation Monitoring of Burbot Populations. Transactions of the American Fisheries Society. 2019;0(0).

10. Telfer EJ, Stovold GT, Li Y, Silva-Junior OB, Grattapaglia DG, Dungey HS. Parentage reconstruction in Eucalyptus nitens using SNPs and microsatellite markers: a comparative analysis of marker data power and robustness. PLoS ONE. 2015;10(7):e0130601. doi: 10.1371/journal.pone.0130601 26158446

11. Castedo-Dorado F, Lago-Parra G, Lombardero MJ, Liebhold AM, Álvarez-Taboada MF. European gypsy moth (Lymantria dispar dispar L.) completes development and defoliates exotic radiata pine plantations in Spain. New Zealand Journal of Forestry Science. 2016;46(1):18. doi: 10.1186/s40490-016-0074-y

12. Storer AJ, Bonello P, Gordon TR, Wood DL. Evidence of resistance to the pitch canker pathogen (Fusarium circinatum) in native stands of Monterey pine (Pinus radiata). Forest Science. 1999;45(4):500–505.

13. Bradshaw R. Dothistroma (red-band) needle blight of pines and the dothistromin toxin: a review. Forest Pathology. 2004;34(3):163–185. doi: 10.1111/j.1439-0329.2004.00356.x

14. Dick MA, Williams NM, Bader MKF, Gardner JF, Bulman LS. Pathogenicity of Phytophthora pluvialis to Pinus radiata and its relation with red needle cast disease in New Zealand. New Zealand Journal of Forestry Science. 2014;44(1):6. doi: 10.1186/s40490-014-0006-7

15. Xue J, Clinton PW, Davis MR, Siddiqui T, Beets PN, Leckie AC. Genotypic variation in foliar nutrient concentrations, δ13C, and chlorophyll fluorescence in relation to tree growth of radiata pine clones in a serpentine soil. Journal of Plant Nutrition and Soil Science. 2013;176(5):724–733.

16. Espinoza SE, Magni CR, Santelices RE, Ivković M, Cabrera AM. Changes in drought tolerance of Pinus radiata in Chile associated with provenance and breeding generation. Annals of Forest Science. 2016;73(2):267–275. doi: 10.1007/s13595-015-0498-1

17. Hansen OK, Kjær ED. Paternity analysis with microsatellites in a Danish Abies nordmanniana clonal seed orchard reveals dysfunctions. Canadian Journal of Forest Research. 2006;36(4):1054–1058. doi: 10.1139/x05-299

18. Moriguchi Y, Goto S, Takahashi M. Genetic management of seed orchards based on information revealed by molecular markers. Journal of the Japanese Forest Society (Japan). 2005;87:161–169.

19. Gömöry D, Bruchanik R, Paule L, et al. Effective population number estimation of three Scots pine (Pinus sylvestris L.) seed orchards based on an integrated assessment of flowering, floral phenology, and seed orchard design. Forest Genetics. 2000;7(1):65–75.

20. Fisher P, Richardson T, Gardner R. Characteristics of single-and multi-copy microsatellites from Pinus radiata. Theoretical and Applied Genetics. 1998;96(6-7):969–979. doi: 10.1007/s001220050828

21. Eliott F, Shepherd M, Henry R. Verification of interspecific pine hybrids using paternally inherited chloroplast microsatellites. Forest Genetics. 2005;12(2):81–87.

22. Liu T, Li Q, Kong L, Yu H. Comparison of microsatellites and SNPs for pedigree analysis in the Pacific oyster Crassostrea gigas. Aquaculture International. 2017;25(4):1507–1519. doi: 10.1007/s10499-017-0127-0

23. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science. 1998;280(5366):1077–1082. doi: 10.1126/science.280.5366.1077 9582121

24. Liu JJ, Schoettle AW, Sniezko RA, Sturrock RN, Zamany A, Williams H, et al. Genetic mapping of Pinus flexilis major gene (Cr4) for resistance to white pine blister rust using transcriptome-based SNP genotyping. BMC Genomics. 2016;17(1):753. doi: 10.1186/s12864-016-3079-2 27663193

25. Lu M, Krutovsky KV, Nelson CD, Koralewski TE, Byram TD, Loopstra CA. Exome genotyping, linkage disequilibrium and population structure in loblolly pine (Pinus taeda L.). BMC Genomics. 2016;17(1):730. doi: 10.1186/s12864-016-3081-8 27624183

26. Telfer E, Graham N, Macdonald L, Sturrock S, Wilcox P, Stanbra L. Approaches to variant discovery for conifer transcriptome sequencing. PLoS ONE. 2018;13(11):e0205835. doi: 10.1371/journal.pone.0205835 30395612

27. Leaché AD, Oaks JR. The utility of single nucleotide polymorphism (SNP) data in phylogenetics. Annual Review of Ecology, Evolution, and Systematics. 2017;48:69–84. doi: 10.1146/annurev-ecolsys-110316-022645

28. Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, et al. Current trends in microsatellite genotyping. Molecular Ecology Resources. 2011;11(4):591–611. doi: 10.1111/j.1755-0998.2011.03014.x 21565126

29. Silva-Junior OB, Faria DA, Grattapaglia D. A flexible multi-species genome-wide 60K SNP chip developed from pooled resequencing of 240 Eucalyptus tree genomes across 12 species. New Phytologist. 2015;206(4):1527–1540. doi: 10.1111/nph.13322 25684350

30. Faivre-Rampant P, Zaina G, Jorge V, Giacomello S, Segura V, Scalabrin S, et al. New resources for genetic studies in Populus nigra: genome-wide SNP discovery and development of a 12k Infinium array. Molecular Ecology Resources. 2016;16(4):1023–1036. doi: 10.1111/1755-0998.12513 26929265

31. Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313(5793):1596–1604. doi: 10.1126/science.1128691 16973872

32. Myburg AA, Grattapaglia D, Tuskan GA, Hellsten U, Hayes RD, Grimwood J, et al. The genome of Eucalyptus grandis. Nature. 2014;510(7505):356–362. doi: 10.1038/nature13308 24919147

33. Birol I, Raymond A, Jackman SD, Pleasance S, Coope R, Taylor GA, et al. Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data. Bioinformatics. 2013;29(12):1492–1497. doi: 10.1093/bioinformatics/btt178 23698863

34. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, et al. The Norway spruce genome sequence and conifer genome evolution. Nature. 2013;497(7451):579–584. doi: 10.1038/nature12211 23698360

35. Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G, et al. Sequencing and assembly of the 22-Gb loblolly pine genome. Genetics. 2014;196(3):875–890. doi: 10.1534/genetics.113.159715 24653210

36. Stevens KA, Wegrzyn J, Zimin A, Puiu D, Crepeau M, Cardeno C, et al. Sequence of the sugar pine megagenome. Genetics. 2016;204(4):1613–1626. doi: 10.1534/genetics.116.193227 27794028

37. Wakamiya I, Newton RJ, Johnston JS, Price HJ. Genome size and environmental factors in the genus Pinus. American Journal of Botany. 1993;80(11):1235–1241. doi: 10.1002/j.1537-2197.1993.tb15360.x

38. Jacobs M, Gardner R, Murray B. Cytological characterization of heterochromatin and rDNA in Pinus radiata and P. taeda. Plant Systematics and Evolution. 2000;223(1-2):71–79. doi: 10.1007/BF00985327

39. Frewen BE, Chen TH, Howe GT, Davis J, Rohde A, Boerjan W, et al. Quantitative trait loci and candidate gene mapping of bud set and bud flush in Populus. Genetics. 2000;154(2):837–845. 10655234

40. Eckert A, Wegrzyn JL, Pande B, Jermstad KD, Lee JM, Liechty JD, et al. Multilocus patterns of nucleotide diversity and divergence reveal positive selection at candidate genes related to cold-hardiness in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii). Genetics. 2009;183(1):289–298. doi: 10.1534/genetics.109.103895 19596906

41. Southerton S, MacMillan C, Bell J, Bhuiyan N, Dowries G, Ravenwood I, et al. Association of allelic variation in xylem genes with wood properties in Eucalyptus nitens. Australian Forestry. 2010;73(4):259–264. doi: 10.1080/00049158.2010.10676337

42. Tchin B, Ho W, Pang S, Ismail J. Gene-associated single nucleotide polymorphism (SNP) in cinnamate 4-hydroxylase (C4H) and cinnamyl alcohol dehydrogenase (CAD) genes from Acacia mangium superbulk trees. Biotechnology. 2011;10(4):303–315. doi: 10.3923/biotech.2011.303.315

43. Lepoittevin C, Harvengt L, Plomion C, Garnier-Géré P. Association mapping for growth, straightness and wood chemistry traits in the Pinus pinaster Aquitaine breeding population. Tree Genetics & Genomes. 2012;8(1):113–126. doi: 10.1007/s11295-011-0426-y

44. Howe GT, Yu J, Knaus B, Cronn R, Kolpak S, Dolan P, et al. A SNP resource for Douglas-fir: de novo transcriptome assembly and SNP detection and validation. BMC Genomics. 2013;14(1):137. doi: 10.1186/1471-2164-14-137 23445355

45. Canales J, Bautista R, Label P, Gómez-Maldonado J, Lesur I, Fernández-Pozo N, et al. De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology. Plant Biotechnology Journal. 2014;12(3):286–299. doi: 10.1111/pbi.12136 24256179

46. Illumina. Infinium iSelect HD and HTS Custom Genotyping BeadChips;. Available from: https://www.illumina.com/products/by-type/microarray-kits/infinium-iselect-custom-genotyping.html.

47. Affymetrix. Affymetrix. My GeneChip Custom Array.;. Available from: http://www.thermofisher.com/nz/en/home/life-science/microarray-analysis/transcriptome-profiling-microarrays/mygenechip-custom-array-program.html.

48. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6(5):e19379. doi: 10.1371/journal.pone.0019379 21573248

49. Kirst M. Maize genotyping using Rapid-seq (Random-Amplified Polymorphic DNA Sequencing). In: Plant and Animal Genome: 11-15 January 2014; San Diego USA; 2014.

50. Neves LG, Davis JM, Barbazuk WB, Kirst M. Whole-exome targeted sequencing of the uncharacterized pine genome. The Plant Journal. 2013;75(1):146–156. doi: 10.1111/tpj.12193 23551702

51. Vidalis A, Scofield DG, Neves LG, Bernhardsson C, García-Gil MR, Ingvarsson PK. Design and evaluation of a large sequence-capture probe set and associated SNPs for diploid and haploid samples of Norway spruce (Picea abies). bioRxiv. 2018.

52. Thistlethwaite FR, Ratcliffe B, Klápště J, Porth I, Chen C, Stoehr MU, et al. Genomic selection of juvenile height across a single-generational gap in Douglas-fir. Heredity. 2019; p. 1.

53. Dillon SK, Nolan M, Li W, Bell C, Wu HX, Southerton SG. Allelic Variation in Cell Wall Candidate Genes Affecting Solid Wood Properties in Natural Populations and Land Races of Pinus radiata. Genetics. 2010;185(4):1477–1487. doi: 10.1534/genetics.110.116582 20498299

54. Dillon SK, Nolan MF, Wu H, Southerton SG. Association genetics reveal candidate gene SNPs affecting wood properties in Pinus radiata. Australian Forestry. 2010;73(3):185–190. doi: 10.1080/00049158.2010.10676326

55. Li Y, Wilcox P, Telfer E, Graham N, Stanbra L. Association of single nucleotide polymorphisms with form traits in three New Zealand populations of radiata pine in the presence of genotype by environment interactions. Tree Genetics & Genomes. 2016;12(4):63. doi: 10.1007/s11295-016-1019-6

56. Wilcox P, Richardson T, Corbett G, Ball R, Lee J, Djorovic A, et al. Framework linkage maps of Pinus radiata D. Don based on pseudotestcross markers. Forest Genetics. 2001;8(2):111–118.

57. Li Y, Klápště J, Telfer E, Wilcox P, Graham N, Macdonald L, et al. Genomic selection for non-key traits in radiata pine when the documented pedigree is corrected using marker information. BMC Genomics. In revision.

58. Telfer E, Graham N, Stanbra L, Manley T, Wilcox P. Extraction of high purity genomic DNA from pine for use in a high-throughput Genotyping Platform. New Zealand Journal of Forestry Science. 2013;43(1):3. doi: 10.1186/1179-5395-43-3

59. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 1990;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2 2231712

60. Neves LG, Davis JM, Barbazuk WB, Kirst M. A high-density gene map of loblolly pine (Pinus taeda L.) based on exome sequence capture genotyping. G3: Genes, Genomes, Genetics. 2014;4(1):29–37. doi: 10.1534/g3.113.008714

61. Lee WP, Stromberg MP, Ward A, Stewart C, Garrison EP, Marth GT. MOSAIK: a hash-based algorithm for accurate next-generation sequencing short-read mapping. PloS one. 2014;9(3):e90581. doi: 10.1371/journal.pone.0090581 24599324

62. Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint arXiv:12073907. 2012.

63. Van Ooijen J. JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen. 2006;33(10.1371).

64. Crawley M. Statistics: An Introduction using R. West Sussex, England; 2005.

65. Pritchard JK, Przeworski M. Linkage disequilibrium in humans: models and data. The American Journal of Human Genetics. 2001;69(1):1–14. doi: 10.1086/321275 11410837

66. Wegrzyn JL, Liechty JD, Stevens KA, Wu LS, Loopstra CA, Vasquez-Gross HA, et al. Unique features of the loblolly pine (Pinus taeda L.) megagenome revealed through sequence annotation. Genetics. 2014;196(3):891–909. doi: 10.1534/genetics.113.159996 24653211

67. Minoche AE, Dohm JC, Himmelbauer H. Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biology. 2011;12(11):R112. doi: 10.1186/gb-2011-12-11-r112 22067484

68. InternationalSheepGenomicsConsortium. SheepHapMap;. Available from: http://www.sheephapmap.org/genseq.php.

69. Kiyotani K, Mai TH, Nakamura Y. Comparison of exome-based HLA class I genotyping tools: identification of platform-specific genotyping errors. Journal of Human Genetics. 2017;62(3):397–405. doi: 10.1038/jhg.2016.141 27881843

70. Illumina. GenomeStudio® Data Analysis Software.;. Available from: https://www.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html.

71. Li M, Wen Y, Lu Q, Fu WJ. An imputation approach for oligonucleotide microarrays. PLoS ONE. 2013;8(3):e58677. doi: 10.1371/journal.pone.0058677 23505547

72. Jurinke C O P, van den Boom D. MALDI-TOF Mass Spectrometry. Molecular Biotechnology. 2004;26:147–163. doi: 10.1385/MB:26:2:147 14764940


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden