Effects of salbutamol and phlorizin on acute pulmonary inflammation and disease severity in experimental sepsis


Autoři: Léia Cardoso-Sousa aff001;  Emilia Maria Gomes Aguiar aff001;  Douglas Carvalho Caixeta aff002;  Danielle Diniz Vilela aff002;  Danilo Pereira da Costa aff001;  Tamires Lopes Silva aff003;  Thúlio Marquez Cunha aff004;  Paulo Rogério Faria aff005;  Foued Salmen Espindola aff002;  Ana Carolina Jardim aff006;  Alexandre Antônio Vieira aff001;  Tales Lyra Oliveira aff007;  Luiz Ricardo Goulart aff002;  Robinson Sabino-Silva aff001
Působiště autorů: Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil aff001;  Institute of Biotechnology, Federal University of Uberlandia, Minas Gerais, Brazil aff002;  Institute of Biomedical Sciences, Laboratory of Immunoparasitology "Dr. Mario Endsfeldz Camargo", Federal University of Uberlandia, Minas Gerais, Brazil aff003;  Department of Pulmonology, School of Medicine, Federal University of Uberlandia, Minas Gerais, Brazil aff004;  Department of Morphology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil aff005;  Laboratory of Virology, Institute of Biomedical Sciences, Federal University of Uberlandia, Minas Gerais, Brazil aff006;  Faculty of Medicine, Municipal University of Sao Caetano do Sul, Sao Paulo, Brazil aff007;  Department of Medical Microbiology and Immunology, University of California Davis, California, United States of America aff008
Vyšlo v časopise: PLoS ONE 14(9)
Kategorie: Research Article
doi: https://doi.org/10.1371/journal.pone.0222575

Souhrn

Respiratory infection can be exacerbated by the high glucose concentration in the airway surface liquid (ASL). We investigated the effects of salbutamol and phlorizin on the pulmonary function, oxidative stress levels and SGLT1 activity in lung, pulmonary histopathological damages and survival rates of rats with sepsis. Sepsis was induced by cecal ligation and puncture surgery (CLP). Twenty-four hours after surgery, CLP rats were intranasally treated with saline, salbutamol or phlorizin. After 2 hours, animals were anesthetized and sacrificed. Sepsis promoted atelectasis and bronchial inflammation, and led to increased expression of SGLT1 on cytoplasm of pneumocytes. Salbutamol treatment reduced bronchial inflammation and promoted hyperinsuflation in CLP rats. The interferon-ɤ and Interleucin-1β concentrations in bronchoalveolar lavage (BAL) were closely related to the bronchial inflammation regulation. Salbutamol stimulated SGLT1 in plasma membrane; whereas, phlorizin promoted the increase of SGLT1 in cytoplasm. Phlorizin reduced catalase activity and induced a significant decrease in the survival rate of CLP rats. Taken together, sepsis promoted atelectasis and lung inflammation, which can be associated with SGLT1 inhibition. The loss of function of SGLT1 by phlorizin are related to the augmented disease severity, increased atelectasis, bronchial inflammation and a significant reduction of survival rate of CLP rats. Alternatively salbutamol reduced BAL inflammatory cytokines, bronchial inflammation, atelectasis, and airway damage in sepsis. These data suggest that this selective β2-adrenergic agonist may protect lung of septic acute effects.

Klíčová slova:

Medicine and health sciences – Diagnostic medicine – Signs and symptoms – Sepsis – Pathology and laboratory medicine – Immunology – Immune response – Inflammation – Immune system – Innate immune system – Cytokines – Immune physiology – Biology and life sciences – Physiology – Developmental biology – Molecular development – Cell biology – Cellular structures and organelles – Cell membranes – Oxidative stress – Biochemistry – Enzymology – Enzymes – Catalases – Dismutases – Superoxide dismutase – Proteins – Physical sciences – Chemistry – Chemical compounds – Organic compounds – Carbohydrates – Monosaccharides – Glucose – Organic chemistry


Zdroje

1. Zhang X, Chang N, Zhang Y, Han Z, Li J, Zhang J. Bakuchiol Protects Against Acute Lung Injury in Septic Mice. Inflam. 2016. doi: 10.1007/s10753-016-0481-5

2. Li Y, Hadden C, Cooper A, Wu H, Lupashin VV, Mayeux PR, et al. Sepsis-induce elevation in plasma serotonin facilitates endothelial hyperpermeability. Sci Rep. 2016. 9: 22747.

3. Kang H, Mao Z, Zhao Y, Yin T, Song O, Pan L, et al. Ethyl pyruvate protects against by regulating energy metabolism. Ther Clin Risk Manag. 2016. 12: 287–94. doi: 10.2147/TCRM.S97989 26966369

4. Cohen J. The immunopathogenesis of sepsis. Nat. 2002. 420 885–891.

5. Zhao H, Zhao M, Wang Y, Li F, Zhang Z. Glycyrrhizic Acid Prevents Sepsis-Induced Acute Lung Injury and Mortality in Rats. J Histochem Cytochem. 2016. 64:125–137. doi: 10.1369/0022155415610168 26385569

6. Cinel I, Ark M, Dellinger P, Karabacak T, Tamer L, Cinel L, et al. Involvement of Rho Kinase (ROCK) in sepsis-induced acute lung injury. J Thorac Dis. 2012. 430–39. doi: 10.3978/j.issn.2072-1439.2010.08.04 22295165

7. Reddy RC, Chen GH, Tekchandani PK, Standiford TJ. Sepsis-induced immunosuppression: from bad to worse. Immunol Res. 2001. 24: 273–287. doi: 10.1385/IR:24:3:273 11817325

8. Santiago MB, Vieira AA, Elias LL, Rodrigues JA, Giusti-Paiva A. Neurohypophyseal response to fluid resuscitation with hypertonic saline during septic shock in rats. Exp Physiol. 2013. 98: 556–563. doi: 10.1113/expphysiol.2012.066241 22903979

9. Walley KR, Lukacs NW, Standiford TJ, Strieter RM and Kunkel SL. Balance of inflammatory cytokines related to severity and mortality of murine sepsis. Infect Immun. 1996. 64(11): 4733–4738. 8890233

10. Prenner BM. Role of long-acting beta2-adrenergic agonists in asthma management based on updated asthma guidelines. Curr Opin Pulm Med. 2008. 14: 57–63. doi: 10.1097/MCP.0b013e3282f27121 18043276

11. Oliveira TL, Candeia-Medeiros N, Cavalcante-Araújo PM, Melo IS, Fávaro-Pipi E, Fátima LA, et al. SGLT1 activity in lung alveolar cells of diabetic rats modulates airway surface liquid glucose concentration and bacterial proliferation. Sci Rep. 2016. 6: 21752. doi: 10.1038/srep21752 26902517

12. Santos RS, Moraes L, Samary CS, Santos CL, Ramos MB, Vasconcellos AP, et al. Fast Versus Slow Recruitment Maneuver at Different Degrees of Acute Lung Inflammation Induced by Experimental Sepsis. Anesth Analq. 2016. 122: 1089–1100.

13. Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, Cooper DJ, et al. Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA. 2008. 299: 637–645. doi: 10.1001/jama.299.6.637 18270352

14. Diniz Vilela D, Gomes Peixoto L, Teixeira RR, Belele Baptista N, Carvalho Caixeta D, Vieira de Souza A, et al. The role of Metformin in Controlling Oxidative Stress in Muscle of Diabetic Rats. Oxid Med Cell Longev. 2016. 6978625.

15. Lauren CS, James AI. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J Bacteriol. 2001. 183: 7173–7181. doi: 10.1128/JB.183.24.7173-7181.2001 11717276

16. Wichterman KA, Baue AE, Chaudry IH. Sepsis and septic shock-a review of laboratory models and proposal. J Surg Res. 1980. 29: 189–201. doi: 10.1016/0022-4804(80)90037-2 6997619

17. Buras JA, Holzmann B, Sitkovsky M. Animal models of sepsis: setting the stage. Nat Rev Drug Discov. 2005. 4: 854–865 (2005). doi: 10.1038/nrd1854 16224456

18. Gonçalves-de-Albuquerque CF, Medeiros-de-Moraes IM, Oliveira FM, Burth P, Bozza PT, Castro Faria MV, et al. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis. P One. 2016. 11: e0153607; 0153607.

19. Craciun FL, Iskander KN, Chiswick EL, Stepien DM, Henderson JM, Remick DG. Early murine polymicrobial sepsis predominantly causes renal injury. Shock. 2014. 41: 97–103. doi: 10.1097/SHK.0000000000000073 24300829

20. Theobaldo MC, Limona F, Petroni RC, Rios EC, Velasco IT, Soriano FG. Hypertonic saline solution drives neutrophil from bystander organ to infectious site in polymicrobial sepsis: a cecal ligation and puncture model. Plos One. 2013. 8: e74369. doi: 10.1371/journal.pone.0074369 24069301

21. Maritim AC, Sanders RA, Watkins JB3rd. Diabetes, oxidative stress, and antioxidants: a rewiew. J Biochem Mol Toxicol. 2003. 17: 24–38. doi: 10.1002/jbt.10058 12616644

22. Demling RH, Seigne P. Metabolic management of patients with severe burns. World J Surg. 2000. 24: 673–680. doi: 10.1007/s002689910109 10773119

23. Viñuales C, Gascón S, Barranquero C, Osada J, Rodríguez-Yoldi MJ. Inhibitory effects of IL-1β on galactose intestinal absorption in rabbits. Cell Physiol Biochem. 2012. 30: 173–186. doi: 10.1159/000339056 22759965

24. Banks WA, Kastin AJ, Broadwell RD. Passage of cytokines across the blood-brain barrier. Neuroimmunomod. 1995. 2: 241–248.

25. Melo IS, Santos YMO, Costa MA, Pacheco ALD, Silva NKGT, Cardoso-Sousa L,et al. Inhibition of sodium glucose cotransporters following status epilepticus induced by intrahippocampal pilocarpine affects neurodegeneration process in hippocampus. Epilep Beh. 2016. 61: 258–268.

26. Aschenbach JR, Borau T, Gäbel G. Glucose uptake via SGLT-1 is stimulate by beta(2)-adrenoceptors in the ruminal epithelium of sheep. J Nutr. 2002. 132: 1254–1257. doi: 10.1093/jn/132.6.1254 12042442

27. Sabino-Silva R, Okamoto MM, David-Silva A, Mori RC, Freitas HS, Machado UF. Increased SGLT1 expression in salivary gland ductal cells correlates with hyposalivation in diabetic and hypertense rats. Diabetol Metab Syndr. 2013. 5 64. doi: 10.1186/1758-5996-5-64 24499577

28. Sabino-Silva R, Alves-Wagner AB, Burgi K, Okamoto MM, Alves AS, Lima GA, et al. SGLT1 protein expression. in plasma membrane of acinar cells correlates with the sympathetic outflow to salivary glands in diabetics and hypertensive rats. Am J Physiol Endocrinol Metab. 2010. 299: E1028–37. doi: 10.1152/ajpendo.00395.2010 20841505

29. Raffay T, Kc P, Reynolds J, Di Fiore J, MacFarlane P, Martin RJ. Repeated β2-adrenergic receptor agonist therapy attenuates the response to rescue bronchodilation in a hyperoxic newborn mouse model. Neonatal. 2014. 106: 126–132.

30. Ozogul B, Halici Z, Cadirci E, Karagoz E, Bayraktutan Z, Yayla M, et al. Comparative study on effects of nebulized and oral salbutamol on a cecal ligation and puncture-induced sepsis model in rats. Drug Res (Stuttg). 2015. 65: 192–198. doi: 10.1055/s-0034-1375683 24918349

31. Okusawa S, Gelfand JA, Ikejima T, Connolly RJ, Dinarello C. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest, 1988. 81: 1162–1172. doi: 10.1172/JCI113431 3258319

32. Zheng H, Fletcher D, Kozak W, Jiang M, Hofmann KJ, Conn CA, et al. Resistance to fever induction and impaired acute-phase response in interleukin-1β-deficient mice. Immunity. 1995. 3: 9–19. 7621081

33. Cohen J, Vicent JL, Adhikari NK, Machado FR, Angus DC, Calandra T, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015. 15: 581–614. doi: 10.1016/S1473-3099(15)70112-X 25932591

34. Eteraf-Oskouei T, Akbarzadeh-Atashkhosrow A, Maghsudi M, Najafi M. Effects of salbutamol on the inflammatory parameters and angiogenesis in the rat air pouch model of inflammation. Res Pharm Sci. 2017. 12: 364. doi: 10.4103/1735-5362.213981 28974974

35. Inagaki N, Kondo K, Yoshinari T, Maruyama N, Susuta Y, Kuki H. Efficacy and safety of canagliflozin in Japanese patients with type 2 diabetes: a randomized, double-blind, placebo-controlled, 12-week study. Diabetes Obes Metab. 2013. 15: 1136–1145. doi: 10.1111/dom.12149 23782594

36. Doggrell SA, McIntyre K. Canagliflozin—something new for type 2 diabetes, but is it safe and efficacious? Expert Opin Pharmacother. 2014. 15: 437–441. doi: 10.1517/14656566.2014.868885 24377759

37. Polidori D, Sha S, Mudaliar S, Ciaraldi TP, Ghash A, Vaccaro N, et al. Canagliflozin lowers postprandial glucose and insulin by delaying intestinal glucose absorption in addition to increasing urinary glucose excretion: results of a randomized, placebo-controlled study. Diab Care. 2013. 36: 2154–2161.

38. Powell DR, Smith M, Greer J, Harris A, Zhao S, DaCosta C, et al. LX4211 increases serum glucagon-like peptide 1 and peptide YY levels by reducing sodium/glucose cotransporter 1 (SGLT1)-mediated absorption of intestinal glucose. J Pharmacol Exp Ther. 2013. 345: 250–259. doi: 10.1124/jpet.113.203364 23487174

39. Koepsell H. The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther. 2016. 7258: 30196–6.


Článek vyšel v časopise

PLOS One


2019 Číslo 9
Nejčtenější tento týden