Can we predict which species win when new habitat becomes available?
Autoři:
Miki Nomura aff001; Ralf Ohlemüller aff001; William G. Lee aff002; Kelvin M. Lloyd aff002; Barbara J. Anderson aff003
Působiště autorů:
Department of Geography, University of Otago, Dunedin, New Zealand
aff001; Manaaki Whenua Landcare Research, Dunedin, New Zealand
aff002; Rutherford Discovery Fellow, The Otago Museum, North Dunedin, Dunedin, New Zealand
aff003
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0213634
Souhrn
Land cover change is a key component of anthropogenic global environmental change, contributing to changes in environmental conditions of habitats. Deforestation is globally the most widespread and anthropogenically driven land cover change leading to conversion from closed forest to open non-forest habitat. This study investigates the relative roles of geographic features, characteristics of species climatic niche and species traits in determining the ability of open-habitat plant species to take advantage of recently opened habitats. We use current occurrence records of 18 herbaceous, predominantly open-habitat species of the genus Acaena (Rosaceae) to determine their prevalence in recently opened habitat. We tested correlation of species prevalence in anthropogenically opened habitat with (i) geographic features of the spatial distribution of open habitat, (ii) characteristics of species climatic niche, and (iii) species traits related to dispersal. While primary open habitat (naturally open) was characterised by cold climates, secondary open habitat (naturally closed but anthropogenically opened) is characterised by warmer and wetter conditions. We found high levels of variation in the species prevalence in secondary open habitat indicating species differences in their ability to colonise newly opened habitat. For the species investigated, geographical features of habitat and climatic niche factors showed generally stronger relationships with species prevalence in secondary open habitat than functional traits. Therefore, for small herbaceous species, geographical features of habitat and environmental factors appear to be more important than species functional traits for facilitating expansion into secondary open habitats. Our results suggested that the land cover change might have triggered the shifts of factors controlling open-habitat plant distributions from the competition with forest trees to current environmental constraints.
Klíčová slova:
Biology and life sciences – Ecology – Ecological niches – Ecosystems – Forests – Population biology – Population dynamics – Geographic distribution – Organisms – Eukaryota – Plants – Trees – Ecology and environmental sciences – Habitats – Terrestrial environments – Environmental geography – Deforestation – People and places – Geographical locations – Oceania – New Zealand
Zdroje
1. Watson JEM, Shanahan DF, Di Marco M, Allan J, Laurance WF, Sanderson EW, et al. Catastrophic Declines in Wilderness Areas Undermine Global Environment Targets. Curr Biol. 2016;26(21):2929–34. doi: 10.1016/j.cub.2016.08.049 27618267
2. Guo FY, Lenoir J, Bonebrake TC. Land-use change interacts with climate to determine elevational species redistribution. Nature Communications. 2018;9.
3. Barlow J, Gardner TA, Araujo IS, Avila-Pires TC, Bonaldo AB, Costa JE, et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(47):18555–60. doi: 10.1073/pnas.0703333104 18003934
4. Gibson L, Lee TM, Koh LP, Brook BW, Gardner TA, Barlow J, et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature. 2011;478(7369):378–+. doi: 10.1038/nature10425 21918513
5. Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science. 2016;353(6296):288–91. doi: 10.1126/science.aaf2201 27418509
6. Keeley JE. Native American impacts on fire regimes of the California coastal ranges. J Biogeogr. 2002;29(3):303–20.
7. Kaplan JO, Krumhardt KM, Zimmermann N. The prehistoric and preindustrial deforestation of Europe. Quaternary Science Reviews. 2009;28(27–28):3016–34.
8. Ewers RM, Kliskey AD, Walker S, Rutledge D, Harding JS, Didham RK. Past and future trajectories of forest loss in New Zealand. Biol Conserv. 2006;133(3):312–25.
9. Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science. 2013;342(6160):850–3. doi: 10.1126/science.1244693 24233722
10. Foster D, Swanson F, Aber J, Burke I, Brokaw N, Tilman D, et al. The importance of land-use legacies to ecology and conservation. Bioscience. 2003;53(1):77–88.
11. Ewers RM, Didham RK, Pearse WD, Lefebvre V, Rosa IMD, Carreiras JMB, et al. Using landscape history to predict biodiversity patterns in fragmented landscapes. Ecol Lett. 2013;16(10):1221–33. doi: 10.1111/ele.12160 23931035
12. Thuiller W, Gueguen M, Georges D, Bonet R, Chalmandrier L, Garraud L, et al. Are different facets of plant diversity well protected against climate and land cover changes? A test study in the French Alps. Ecography. 2014;37(12):1254–66. doi: 10.1111/ecog.00670 25722539
13. Brown KA, Parks KE, Bethell CA, Johnson SE, Mulligan M. Predicting Plant Diversity Patterns in Madagascar: Understanding the Effects of Climate and Land Cover Change in a Biodiversity Hotspot. Plos One. 2015;10(4).
14. Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, et al. Global consequences of land use. Science. 2005;309(5734):570–4. doi: 10.1126/science.1111772 16040698
15. Mosher ES, Silander JA, Latimer AM. The role of land-use history in major invasions by woody plant species in the northeastern North American landscape. Biol Invasions. 2009;11(10):2317–28.
16. Hutchinson GE. POPULATION STUDIES—ANIMAL ECOLOGY AND DEMOGRAPHY—CONCLUDING REMARKS. Cold Spring Harbor Symp Quant Biol. 1957;22:415–27.
17. Lee WG, Macmillan BH, Partridge TR, Lister R, Lloyd KM. Fruit features in relation to the ecology and distribution of Acaena (Rosaceae) species in New Zealand. N Z J Ecol. 2001;25(1):17–27.
18. Bitter G. Die Gattung Acaena. Vorstudien zu einer Monographie. Stuttgart, Germany: E. Schweizerbart; 1910. 1–336 p.
19. Grondona E. Las especies argentinas del género Acaena (Rosaceae) 1964. 209–342 p.
20. Webb CJ, Sykes WR, Garnock-Jones PJ. Flora of New Zealand. Christchurch, New Zealand: Botany Division, Department of Scientific and Industrial Research; 1988.
21. Leathwick J, McGlone M, Walker S. New zealand’s potential vegetation pattern 2004 [https://lris.scinfo.org.nz/layer/48289-potential-vegetation-of-new-zealand/.
22. Landcare Research Informatics team. LCDB v4.1—Land Cover Database version 4.1, Mainland New Zealand 2015 [4.1:[https://lris.scinfo.org.nz/layer/48423-lcdb-v41-land-cover-database-version-41-mainland-new-zealand/.
23. Columbus J. An assessment of fractal interpolation for deriving Digital Elevation Models (DEM): University of Otago; 2011.
24. Environmental Systems Research Institute. ArcGIS Desktop: Release 10.2. 2013.
25. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int J Climatol. 2005;25(15):1965–78.
26. Pearson RG, Dawson TP. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr. 2003;12(5):361–71.
27. Venables WN, Ripley BD. Modern applied statistics with S. Springer-Verlag; 2002.
28. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; 2016.
29. Barton K. MuMIn: Multi-Model Inference. R package version 1.43.6 ed2019.
30. Schoener TW. NONSYNCHRONOUS SPATIAL OVERLAP OF LIZARDS IN PATCHY HABITATS. Ecology. 1970;51(3):408–18.
31. Broennimann O, Fitzpatrick MC, Pearman PB, Petitpierre B, Pellissier L, Yoccoz NG, et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob Ecol Biogeogr. 2012;21(4):481–97.
32. McWethy DB, Wilmshurst JM, Whitlock C, Wood JR, McGlone MS. A High-Resolution Chronology of Rapid Forest Transitions following Polynesian Arrival in New Zealand. Plos One. 2014;9(11):9.
33. Perry GLW, Wilmshurst JM, McGlone MS. Ecology and long-term history of fire in New Zealand. N Z J Ecol. 2014;38(2):157–76.
34. Curran LM, Trigg SN, McDonald AK, Astiani D, Hardiono YM, Siregar P, et al. Lowland forest loss in protected areas of Indonesian Borneo. Science. 2004;303(5660):1000–3. doi: 10.1126/science.1091714 14963327
35. Lawton RO, Nair US, Pielke RA, Welch RM. Climatic impact of tropical lowland deforestation on nearby montane cloud forests. Science. 2001;294(5542):584–7. doi: 10.1126/science.1062459 11641496
36. Dirzo R, Garcia MC. Rates of deforestation in Los-Tuxtlas, a neotropical area in southeast Mexico. Conserv Biol. 1992;6(1):84–90.
37. Pearson RG, Stanton JC, Shoemaker KT, Aiello-Lammens ME, Ersts PJ, Horning N, et al. Life history and spatial traits predict extinction risk due to climate change. Nature Climate Change. 2014;4(3):217–21.
38. Holbrook SJ, Forrester GE, Schmitt RJ. Spatial patterns in abundance of a damselfish reflect availability of suitable habitat. Oecologia. 2000;122(1):109–20. doi: 10.1007/PL00008826 28307947
39. Gazol A, Tamme R, Takkis K, Kasari L, Saar L, Helm A, et al. Landscape- and small-scale determinants of grassland species diversity: direct and indirect influences. Ecography. 2012;35(10):944–51.
40. Brouwers NC, Newton AC. The influence of habitat availability and landscape structure on the distribution of wood cricket (Nemobius sylvestris) on the Isle of Wight, UK. Landscape Ecology. 2009;24(2):199–212.
41. Corlett RT, Westcott DA. Will plant movements keep up with climate change? Trends Ecol Evol. 2013;28(8):482–8. doi: 10.1016/j.tree.2013.04.003 23721732
42. Eidesen PB, Ehrich D, Bakkestuen V, Alsos IG, Gilg O, Taberlet P, et al. Genetic roadmap of the Arctic: plant dispersal highways, traffic barriers and capitals of diversity. New Phytologist. 2013;200(3):898–910. doi: 10.1111/nph.12412 23869846
43. Slatyer RA, Hirst M, Sexton JP. Niche breadth predicts geographical range size: a general ecological pattern. Ecol Lett. 2013;16(8):1104–14. doi: 10.1111/ele.12140 23773417
44. Shmida A, Ellner S. Seed dispersal on pastoral grazers in open mediterranean chaparral, Israel. Israel Journal of Botany. 1983;32(3):147–59.
45. Carlquist S, Pauly Q. Experimental studies on epizoochorous dispersal in Californian USA plants. Aliso. 1985;11(2):167–78.
46. Laanisto L, Sammul M, Kull T, Macek P, Hutchings MJ. Trait-based analysis of decline in plant species ranges during the 20th century: a regional comparison between the UK and Estonia. Glob Change Biol. 2015;21(7):2726–38.
47. Lloyd KM, Lee WG, Wilson JB. Growth and reproduction of New Zealand Acaena (Rosaceae) species in relation to rarity and commonness. N Z J Ecol. 2002;26(2):149–60.
48. Walker S, Wilson DJ, Norbury G, Monks A, Tanentzap AJ. Effects of secondary shrublands on bird, lizard and invertebrate faunas in a dryland landscape. N Z J Ecol. 2014;38(2):242–56.
49. Hulme PE. Trade, transport and trouble: managing invasive species pathways in an era of globalization. Journal of Applied Ecology. 2009;46(1):10–8.
50. Ibanez I, Primack RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD, et al. Forecasting phenology under global warming. Philos Trans R Soc B-Biol Sci. 2010;365(1555):3247–60.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Proč jsou nemocnice nepřítelem spánku? A jak to změnit?
- Dlouhodobá ketodieta může poškozovat naše orgány
- „Jednohubky“ z klinického výzkumu – 2024/42
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- MUDr. Jana Horáková: Remise již dosahujeme u více než 80 % pacientů s myastenií