A matter of taste: Spatial and ontogenetic variations on the trophic ecology of the tiger shark at the Galapagos Marine Reserve
Autoři:
Pelayo Salinas-de-León aff001; Denisse Fierro-Arcos aff001; Jennifer Suarez-Moncada aff003; Alberto Proaño aff003; Jacob Guachisaca-Salinas aff004; Diego Páez-Rosas aff003
Působiště autorů:
Charles Darwin Research Station, Charles Darwin Foundation, Puerto Ayora, Galapagos Islands, Ecuador
aff001; Pristine Seas, National Geographic Society, Washington, DC, United States of America
aff002; Galapagos National Park, Puerto Ayora, Galapagos Islands, Ecuador
aff003; Facultad de Ciencias Naturales, Universidad de Guayaquil, Guayaquil, Ecuador
aff004; Universidad San Francisco de Quito, Galapagos Science Center, Isla San Cristóbal, Galapagos Islands, Ecuador
aff005
Vyšlo v časopise:
PLoS ONE 14(9)
Kategorie:
Research Article
doi:
https://doi.org/10.1371/journal.pone.0222754
Souhrn
Sharks are top predators across ocean food webs and have a major ecological role in marine ecosystems. Investigating the trophic ecology of this group of species is thus essential to understand ecosystem functioning and inform specific management actions aimed at shark conservation. The Galapagos Islands represent one of the last ocean wildernesses, where populations of sharks and other top marine predators come close to a pristine status. Here we provide the first study on the trophic ecology of the tiger shark (Galeocerdo cuvier) within the Galapagos Marine Reserve (GMR), using a combination of stable isotope analysis, satellite tracking, and passive acoustic telemetry to investigate ontogenetic and spatial variations at two regions. The mean estimated δ13C and δ15N at Isabela island (western region) were -13.9 ± 0.5‰ and 13.7 ± 0.7‰; and for Santa Cruz island (central region) were -13.8 ± 0.3‰ and 13.4 ± 0.7‰, respectively. Green sea turtles (Chelonia mydas) were the main prey item for large tiger sharks (>280 cm TL), while smaller sharks mainly fed on squid and pelagic fish. Tiger sharks exhibited a high degree of philopatry around green sea-turtle nesting areas, with the majority of sharks detected around green sea-turtle nesting areas for at least 10 months after their capture date, and some individuals were even present during the entire three-year study period. Although we did not report statistically significant differences between the two regions, isotopic and electronic tagging data suggest that tiger sharks in the Galapagos could be segregated into specific populations separated by geographical scales of <100 km. The high productivity of the archipelago, along with the protection from industrial fishing granted by the GMR, result in abundant and predictable sources of prey. This high food abundance, combined with the presence of suitable habitats throughout the tiger shark life cycle, might result in a reduction of migratory behaviours when compared to movement patterns of tiger sharks in other ocean basins. Additional studies using genetic tools could provide further evidence on the presence of separate management units, as it has been recently revealed for other shark species inhabiting the GMR.
Klíčová slova:
Biology and life sciences – Organisms – Eukaryota – Animals – Vertebrates – Fish – Chondrichthyes – Elasmobranchii – Sharks – Amniotes – Reptiles – Testudines – Turtles – Ecology – Community ecology – Trophic interactions – Predation – Marine ecology – Marine biology – Earth sciences – Geomorphology – Topography – Landforms – Islands – Marine and aquatic sciences – Ecology and environmental sciences – Physical sciences – Physics – Acoustics – Mathematics – Geometry – Ellipses
Zdroje
1. Cortés E. Standardized diet compositions and trophic levels of sharks. ICES J Mar Sci. 1999;56: 707–717.
2. Heithaus MR, Wirsing A, Dill L. The ecological importance of intact top-predator populations: a synthesis of 15 years of research in a seagrass ecosystem. Mar Freshw Res. 2012;63: 1039–1050.
3. Heithaus MR, Frid A, Wirsing AJ, Worm B. Predicting ecological consequences of marine top predator declines. Trends Ecol Evol. 2008;23: 202–210. doi: 10.1016/j.tree.2008.01.003 18308421
4. Myers RA, Worm B. Rapid worldwide depletion of predatory fish communities. Nature. 2003;423: 280–283. doi: 10.1038/nature01610 12748640
5. Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, Harrison LR, et al. Extinction risk and conservation of the world’s sharks and rays. Elife. 2014;3: e00590. doi: 10.7554/eLife.00590 24448405
6. Stevens J. The effects of fishing on sharks, rays, and chimaeras (chondrichthyans), and the implications for marine ecosystems. ICES J Mar Sci. 2000;57: 476–494. doi: 10.1006/jmsc.2000.0724
7. Dulvy NK, Ellis JR, Goodwin NB, Grant A, Reynolds JD, Jennings S. Methods of assessing extinction risk in marine fishes. Fish Fish. 2004;5: 255–276.
8. Myers RA, Baum JK, Shepard TD, Powers SP, Peterson CH. Cascading effects and the loss of apex predatory sharks from a coastal ocean. Science. 2007;325: 1846–1850.
9. Meyer CG, O’Malley JM, Papastamatiou YP, Dale JJ, Hutchinson MR, Anderson JM, et al. Growth and maximum size of tiger sharks (Galeocerdo cuvier) in Hawaii. PloS One. 2014;9: e84799. doi: 10.1371/journal.pone.0084799 24416287
10. Randall J. Review of the biology of the tiger shark (Galeocerdo cuvier). Mar Freshw Res. 1992;43: 21. doi: 10.1071/MF9920021
11. Rancurel P, Intès A. Le requin tigre, Galeocerdo cuvieri Lacépède, des eaux néocalédoniennes: examen des contenus stomacaux. Tethys. 1984;10: 195–199.
12. Simpfendorfer C. Biology of Tiger sharks (Galeocerdo cuvier) caught by the Queensland shark meshing program off Townsville, Australia. Mar Freshw Res. 1992;43: 33. doi: 10.1071/MF9920033
13. Lowe CG, Wetherbee BM, Crow GL, Tester AL. Ontogenetic dietary shifts and feeding behavior of the tiger shark, Galeocerdo cuvier, in Hawaiian waters. Environ Biol Fishes. 1996;47: 203–211.
14. Wirsing AJ, Heithaus MR, Dill LM. Fear factor: do dugongs (Dugong dugon) trade food for safety from tiger sharks (Galeocerdo cuvier)? Oecologia. 2007;153: 1031–1040. doi: 10.1007/s00442-007-0802-3 17636333
15. Heithaus M R., Dill L M. Does tiger shark predation risk influence foraging habitat use by bottlenose dolphins at multiple spatial scales? Oikos. 2006;114: 257–264. doi: 10.1111/j.2006.0030–1299.14443.x
16. Heithaus MR, Frid A, Wirsing AJ, Dill LM, Fourqurean JW, Burkholder D, et al. State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystem. J Anim Ecol. 2007;76: 837–844. doi: 10.1111/j.1365-2656.2007.01260.x 17714261
17. Simpfendorfer CA, Goodreid AB, McAuley RB. Size, sex and geographic variation in the diet of the tiger shark, Galeocerdo cuvier, from Western Australian waters. Environ Biol Fishes. 2001;61: 37–46.
18. De Crosta MA. Age determination, growth, and energetics of three species of carcharhinid sharks in Hawaii. University of Hawaii; 1984.
19. Papastamatiou YP, Wetherbee BM, Lowe CG, Crow GL. Distribution and diet of four species of carcharhinid shark in the Hawaiian Islands: evidence for resource partitioning and competitive exclusion. Mar Ecol Prog Ser. 2006;320: 239–251.
20. Dicken ML, Hussey NE, Christiansen HM, Smale MJ, Nkabi N, Cliff G, et al. Diet and trophic ecology of the tiger shark (Galeocerdo cuvier) from South African waters. PloS One. 2017;12: e0177897. doi: 10.1371/journal.pone.0177897 28594833
21. Aines AC, Carlson JK, Boustany A, Mathers A, Kohler NE. Feeding habits of the tiger shark, Galeocerdo cuvier, in the northwest Atlantic Ocean and Gulf of Mexico. Environ Biol Fishes. 2018;101: 403–415. doi: 10.1007/s10641-017-0706-y
22. Estupiñán-Montaño C, Estupiñán-Ortiz JF, Cedeño-Figueroa LG, Galván-Magaña F, Polo-Silva CJ. Diet of the bull shark, Carcharhinus leucas, and the tiger shark, Galeocerdo cuvier, in the eastern Pacific Ocean. Turk J Zool. 2017; 7.
23. Acuña-Marrero D, Smith ANH, Hammerschlag N, Hearn A, Anderson MJ, Calich H, et al. Residency and movement patterns of an apex predatory shark (Galeocerdo cuvier) at the Galapagos Marine Reserve. Schmidt JV, editor. PloS One. 2017;12: e0183669. doi: 10.1371/journal.pone.0183669 28829820
24. MacNeil Ma, Skomal GB, Fisk AT. Stable isotopes from multiple tissues reveal diet switching in sharks. Mar Ecol Prog Ser. 2005;302: 199–206.
25. Shiffman DS, Gallagher AJ, Boyle MD, Hammerschlag-Peyer CM, Hammerschlag N. Stable isotope analysis as a tool for elasmobranch conservation research: a primer for non-specialists. Mar Freshw Res. 2012;63: 635. doi: 10.1071/MF11235
26. Páez-Rosas D, Insuasti-Zarate P, Riofrío-Lazo M, Galván-Magaña F. Feeding behavior and trophic interaction of three shark species in the Galapagos Marine Reserve. PeerJ. 2018;6: e4818. doi: 10.7717/peerj.4818 29844971
27. Boecklen WJ, Yarnes CT, Cook BA, James AC. On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol Syst. 2011;42: 411–440.
28. Kim SL, del Rio CM, Casper D, Koch PL. Isotopic incorporation rates for shark tissues from a long-term captive feeding study. J Exp Biol. 2012;215: 2495–2500. doi: 10.1242/jeb.070656 22723489
29. Newsome SD, Martinez del Rio C, Bearhop S, Phillips DL. A niche for isotopic ecology. Front Ecol Environ. 2007;5: 429–436.
30. Martínez del Rio C, Wolf N, Carleton SA, Gannes LZ. Isotopic ecology ten years after a call for more laboratory experiments. Biol Rev. 2009;84: 91–111. doi: 10.1111/j.1469-185X.2008.00064.x 19046398
31. Salinas-de-León P, Acuña-Marrero D, Rastoin E, Friedlander AM, Donovan MK, Sala E. Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf. PeerJ. 2016;4: e1911. doi: 10.7717/peerj.1911 27190701
32. Seminoff J, Zárate P, Coyne M, Foley D, Parker D, Lyon B, et al. Post-nesting migrations of Galápagos green turtles Chelonia mydas in relation to oceanographic conditions: integrating satellite telemetry with remotely sensed ocean data. Endanger Species Res. 2008;4: 57–72. doi: 10.3354/esr00066
33. Sandin SA, Smith JE, DeMartini EE, Dinsdale EA, Donner SD, Friedlander AM, et al. Baselines and degradation of coral reefs in the Northern Line Islands. PLoS One. 2008;3: e1548. doi: 10.1371/journal.pone.0001548 18301734
34. Friedlander AM, Zgliczynski BJ, Ballesteros E, Aburto-Oropeza O, Bolaños A, Sala E. The shallow-water fish assemblage of Isla del Coco National Park, Costa Rica: structure and patterns in an isolated, predator-dominated ecosystem. Rev Biol Trop. 2012;60: 321–338.
35. Páez-Rosas D, Aurioles-Gamboa D, Alava JJ, Palacios DM. Stable isotopes indicate differing foraging strategies in two sympatric otariids of the Galapagos Islands. J Exp Mar Biol Ecol. 2012;424: 44–52.
36. Acuña-Marrero D, Jiménez J, Smith F, Doherty PF, Hearn A, Green JR, et al. Whale shark (Rhincodon typus) seasonal presence, residence time and habitat use at Darwin Island, Galapagos Marine Reserve. PLoS One. 2014;9: e115946. doi: 10.1371/journal.pone.0115946 25551553
37. Holland KN, Wetherbee BM, Lowe CG, Meyer CG. Movements of tiger sharks (Galeocerdo cuvier) in coastal Hawaiian waters. Mar Biol. 1999;134: 665–673. doi: 10.1007/s002270050582
38. Tieszen LL, Boutton TW, Tesdahl KG, Slade NA. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ 13 C analysis of diet. Oecologia. 1983;57: 32–37. doi: 10.1007/BF00379558 28310153
39. Logan JM, Jardine TD, Miller TJ, Bunn SE, Cunjak RA, Lutcavage ME. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. J Anim Ecol. 2008;77: 838–846. doi: 10.1111/j.1365-2656.2008.01394.x 18489570
40. Parnell AC, Phillips DL, Bearhop S, Semmens BX, Ward EJ, Moore JW, et al. Bayesian stable isotope mixing models. Environmetrics. 2013;24: 387–399.
41. Ruiz-Cooley R, Villa EC, Gould WR. Ontogenetic variation of δ13C and δ15N recorded in the gladius of the jumbo squid Dosidicus gigas: geographic differences. Mar Ecol Prog Ser. 2010;399: 187–198.
42. Páez‐Rosas D, Rodríguez‐Pérez M, Riofrío‐Lazo M. Competition influence in the segregation of the trophic niche of otariids: a case study using isotopic bayesian mixing models in Galapagos pinnipeds. Rapid Commun Mass Spectrom. 2014;28: 2550–2558. doi: 10.1002/rcm.7047 25366402
43. Páez-Rosas D, Aurioles-Gamboa D. Spatial variation in the foraging behaviour of the Galapagos sea lions (Zalophus wollebaeki) assessed using scat collections and stable isotope analysis. J Mar Biol Assoc UK. 2014;94: 1099–1107. doi: 10.1017/S002531541300163X
44. Phillips DL, Inger R, Bearhop S, Jackson AL, Moore JW, Parnell AC, et al. Best practices for use of stable isotope mixing models in food-web studies. Can J Zool. 2014;92: 823–835.
45. Caut S, Angulo E, Courchamp F. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. J Appl Ecol. 2009;46: 443–453.
46. Hussey NE, Brush J, McCarthy ID, Fisk AT. δ15N and δ13C diet–tissue discrimination factors for large sharks under semi-controlled conditions. Comp Biochem Physiol A Mol Integr Physiol. 2010;155: 445–453. doi: 10.1016/j.cbpa.2009.09.023 19800980
47. Malpica-Cruz L, Herzka SZ, Sosa-Nishizaki O, Lazo JP. Tissue-specific isotope trophic discrimination factors and turnover rates in a marine elasmobranch: empirical and modeling results. Can J Fish Aquat Sci. 2012;69: 551–564.
48. Jackson AL, Inger R, Parnell AC, Bearhop S. Comparing isotopic niche widths among and within communities: SIBER–Stable Isotope Bayesian Ellipses in R. J Anim Ecol. 2011;80: 595–602. doi: 10.1111/j.1365-2656.2011.01806.x 21401589
49. Layman CA, Arrington DA, Montaña CG, Post DM. Can stable isotope ratios provide for community‐wide measures of trophic structure? Ecology. 2007;88: 42–48. doi: 10.1890/0012-9658(2007)88[42:csirpf]2.0.co;2 17489452
50. Meyer C, Clark T, Papastamatiou Y, Whitney N, Holland K. Long-term movement patterns of tiger sharks Galeocerdo cuvier in Hawaii. Mar Ecol Prog Ser. 2009;381: 223–235. doi: 10.3354/meps07951
51. Hoenner X, Whiting SD, Hindell MA, McMahon CR. Enhancing the use of Argos satellite data for home range and long distance migration studies of marine animals. PLoS One. 2012;7: e40713. doi: 10.1371/journal.pone.0040713 22808241
52. Hammerschlag N, Gallagher AJ, Lazarre DM. A review of shark satellite tagging studies. J Exp Mar Biol Ecol. 2011;398: 1–8. doi: 10.1016/j.jembe.2010.12.012
53. Jonsen ID, Myers RA, Flemming JM. Meta‐analysis of animal movement using state‐space models. Ecology. 2003;84: 3055–3063.
54. Lea JS, Wetherbee BM, Queiroz N, Burnie N, Aming C, Sousa LL, et al. Repeated, long-distance migrations by a philopatric predator targeting highly contrasting ecosystems. Sci Rep. 2015;5: 11202. doi: 10.1038/srep11202 26057337
55. Jonsen ID, Flemming JM, Myers RA. Robust state–space modeling of animal movement data. Ecology. 2005;86: 2874–2880.
56. R Core Team. R: A language and environment for statistical computing. 2013.
57. Jonsen I. Joint estimation over multiple individuals improves behavioural state inference from animal movement data. Sci Rep. 2016;6: 20625. doi: 10.1038/srep20625 26853261
58. Lea JSE, Wetherbee BM, Sousa LL, Aming C, Burnie N, Humphries NE, et al. Ontogenetic partial migration is associated with environmental drivers and influences fisheries interactions in a marine predator. ICES J Mar Sci. 2018;75: 1383–1392. doi: 10.1093/icesjms/fsx238
59. Evans JS, Ram K. Package ‘spatialEco.’ 2018.
60. Graham F, Rynne P, Estevanez M, Luo J, Ault JS, Hammerschlag N. Use of marine protected areas and exclusive economic zones in the subtropical western North Atlantic Ocean by large highly mobile sharks. Divers Distrib. 2016;22: 534–546. doi: 10.1111/ddi.12425
61. Bui R, Buliung R, Remmel T. aspace: A collection of functions for estimating centrographic statistics and computational geometries for spatial point patterns. R Package Version. 2012;3.
62. QGIS Development Team. QGIS geographic information system. Open Source Geospatial Foundation Project, Versão. 2015;
63. McConnaughey T, McRoy C. Food-web structure and the fractionation of carbon isotopes in the Bering Sea. Mar Biol. 1979;53: 257–262.
64. Hammerschlag N, Bell I, Fitzpatrick R, Gallagher AJ, Hawkes LA, Meekan MG, et al. Behavioral evidence suggests facultative scavenging by a marine apex predator during a food pulse. Behav Ecol Sociobiol. 2016;70: 1777–1788.
65. Carrión-Cortez JA, Zárate P, Seminoff JA. Feeding ecology of the green sea turtle (Chelonia mydas) in the Galapagos Islands. J Mar Biol Assoc U K. 2010;90: 1005–1013.
66. Palacios DM. Seasonal patterns of sea-surface temperature and ocean color around the Galápagos: regional and local influences. Deep Sea Res Part II Top Stud Oceanogr. 2004;51: 43–57. doi: 10.1016/j.dsr2.2003.08.001
67. Ferreira LC, Thums M, Meeuwig JJ, Vianna GMS, Stevens J, McAuley R, et al. Crossing Latitudes—Long-Distance Tracking of an Apex Predator. PloS One. 2015;10: e0116916. doi: 10.1371/journal.pone.0116916 25671609
68. Afonso AS, Garla R, Hazin FHV. Tiger sharks can connect equatorial habitats and fisheries across the Atlantic Ocean basin. PloS One. 2017;12: e0184763. doi: 10.1371/journal.pone.0184763 28926627
69. Acuña-Marrero D, Smith A, Salinas-de-León P, Harvey E, Pawley M, Anderson M. Spatial patterns of distribution and relative abundance of coastal shark species in the Galapagos Marine Reserve. Mar Ecol Prog Ser. 2018;593: 73–95. doi: 10.3354/meps12505
70. Pazmiño DA, Maes GE, Simpfendorfer CA, Salinas-de-León P, van Herwerden L. Genome-wide SNPs reveal low effective population size within confined management units of the highly vagile Galapagos shark (Carcharhinus galapagensis). Conserv Genet. 2017;18: 1151–1163. doi: 10.1007/s10592-017-0967-1
71. Nakamura I, Watanabe Y, Papastamatiou Y, Sato K, Meyer C. Yo-yo vertical movements suggest a foraging strategy for tiger sharks Galeocerdo cuvier. Mar Ecol Prog Ser. 2011;424: 237–246. doi: 10.3354/meps08980
72. Beebe W. Galapagos: world’s end. New York: Putnam; 1924.
73. Beebe W. The Arcturus adventure: an account of the New York Zoological Society’s first oceanographic expedition. New York: Putnam; 1926.
74. White ER, Myers MC, Flemming JM, Baum JK. Shifting elasmobranch community assemblage at Cocos Island-an isolated marine protected area: Elasmobranch Community Shifts. Conserv Biol. 2015; n/a-n/a. doi: 10.1111/cobi.12478 25807991
75. Reyes H, Ramírez J, Salinas-de-León P, Banda G, Sevilla G, Revelo W. Plan Piloto de Pesca de Altura con arte de pesca “Empate Oceanico Modificado” en la Reserva Marina de Galápagos. Puerto Ayora, Galapagos: Dirección del Parque Nacional Galápagos; 2014.
Článek vyšel v časopise
PLOS One
2019 Číslo 9
- Jak a kdy u celiakie začíná reakce na lepek? Možnou odpověď poodkryla čerstvá kanadská studie
- Pomůže v budoucnu s triáží na pohotovostech umělá inteligence?
- Spermie, vajíčka a mozky – „jednohubky“ z výzkumu 2024/38
- Metamizol jako analgetikum první volby: kdy, pro koho, jak a proč?
- Skotská studie upřesnila zdravotní benefity aktivního cestování za prací a studiem